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The problem or minimizing a real-valued function F of n variables arises in many 

contexts. Most methods for solving this problem have their roots in Newton's method, i.e. 

they are based on approximating F by a quadratic function Q. If the number of variables 

n is large, then Newton's method can be problematic since it requires the computation 

and storage of the Hessian matrix of second derivatives. Use of finite-differencing and 

sparse-matrix techniques has overcome some of these problems but not all. 

In this thesis, we examine a flexible class of methods, called truncated-Newton 

methods. They arc based on approximately minimizing the quadratic function Q using 

an iterative scheme such as the linear conjugate-gradient algorithm. A truncated-Newton 

algorithm is made up of two sub-algorithms: an outer non-linear algorithm controlling 

the entire minimization, and an inner linear algorithm for approximately minimizing Q. 

The most important choice is the selection of the inner algorithm. When the Hessian 

matrix is known to be positive-definite everywhere, then the basic linear conjugate- 

gradient algorithm can be used. If not, Q may not have a minimum. We have used 

the correspondence between the linear conjugate-gradient algorithm and the Lanczos 

algorithm for tridiagonalizing a symmetric matrix to develop methods for the indefinite 

case. 

The performance of the inner algorithm can be greatly improved through the use of 

preconditioning strategics. Preconditionings can be developed using either the outer non- 

linear algorithm or using information computed during the inner algorithm. A number 

of diagonal and tridiagonal preconditioning strategies are derived here. 

Numerical tests show that a carefully chosen truncated-Newton method can per- 

form significantly better than the best non-linear conjugate-gradient algorithms available 

today. This is important since the two classes of methods have comparable storage and 

operation counts, and they are the only methods available for solving many large-scale 

problems. 
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1     Introduction 

1.1.     Motivation 

The problem of minimizing a real-valued function of n variables 

minF(x) (1.1.1) 
X 

arises in many contexts and applications. Over the years, a large variety of methods have 

been derived to solve this problem. Many of these methods have their roots in Newton's 

method, i.e. they are based on approximating F by a quadratic function using first- 

and second-derivative information at the current point. The quadratic function is then 

minimized, and it is hoped that this minimum gives information about the minimum of 

the original function. 

Much work has been done to adapt and improve this basic method. In part the 

motivation for these changes is that the basic method is not always defined. For example, 

if the Hessian matrix is indefinite at some iteration, then the quadratic does not have a 

minimum. 

Variations in the methods for problem (1.1.1) have also been derived for reasons 

based on the nature of the objective function F. There are basically two difficulties which 

can arise. Firstly, if the number of variables n is large, then storage limitations can make 

it difficult to store information about the problem. Secondly, the second derivatives of 

the function F may be very expensive (or impossible) to compute. 

Because Newton's method in its traditional form requires the computation and 

storage of the n X n matrix of second derivatives, it can be problematic for both of 

these reasons. Use of finite-differencing and sparse-matrix techniques has overcome some 

of these problems, but not all. 

The other chief classes of methods are Quasi-Ncwton and Conjugate-Gradient algo- 

rithms. Quasi-Newton methods do not require any second-derivative information; they 

still require the storage of an n X n matrix. Conjugate-gradient methods, however, 

remove even this difficulty, since they only require a few n vectors. 

These difficulties are not overcome without some cost. In terms of the total number 

of iterations (or function evaluations) required to solve a minimization problem, Newton's 

method is extremely efficient. Quasi-Ncwton methods can often approach this efficiency 
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on small problems, but the performance of conjugate-gradient methods is by comparison 

erratic. 

These differences in requirements and performance for the three classes of methods 

are unfortunate. They imply that all minimization problems must also be put into one 

of three classes, based on which algorithm is best capable of solving them on a given 

machine. Unfortunately, differences between problems are not always very sharp. It 

would be preferable if the distinctions between algorithms were not as great. 

In the last few years, work has been done to fill in the gap between conjugate- 

gradient and quasi-Newton methods. This work comes under the category of limited- 

memory Quasi-Newton methods. More recently still, truncated-Newton methods have 

been developed. In the context in which we will develop them, they can be viewed as a 

synthesis of all three basic methods. 

The great advantage of truncated-Newton methods is their flexibility. They can be 

adjusted to emulate any of the standard algorithms as well as everything in-betwecn. 

They have variable storage requirements. It is possible to adjust them to use varying 

amounts of second-derivative information. It is also possible to fine-tune these methods 

to the needs of the problem being solved. Potentially, they can also adapt to changes in 

the behavior of the function being minimized. 

In addition, we are concerned with the effect the computing environment has on 

the choice of an algorithm. When using a large, central computing facility complete 

with program libraries and technical consultants, then efficiency and stability of the 

method are the only considerations. However, when a small machine is the primary device 

available, then the size and complexity of the program must also be taken into account. 

This situation is becoming ever more important as the cost of small machines continues 

to drop, and as distributed computing becomes a more popular way of allocating machine 

resources. 

The main topic of this thesis is the effective implementation of truncated-Newton 

methods. After some necessary preliminaries, it begins with a discussion of the three 

traditional classes of algorithms, along with a discussion of the techniques which are used 

to make them useful for larger classes of problems. This is followed by a description of 

truncated-Newton methods in their most basic form, along with a discussion of some of 

the underlying algorithms that might be used to implement them. Chapter 4 deals with 
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convergence criteria for the sub-algorithm, and Chapter 5 with preconditioning, which 

is essential if these methods are to be competitive. Chapter 6 discusses extensions to 

constrained and least-squares problems. Numerical results arc presented in Chapter 7. 

Finally, an extensive discussion of how to adapt truncated-Newton methods for specific 

problems (both through a priori information and through dynamic modification of the 

algorithm) is given in Chapter 8. 

1.2.     Notation and Basic Theory 

The principal problem we arc trying to solve in this thesis is 

min F(x), (1.2.1) 

where F(x) is a nonlinear real-valued function of the variables 

('■' x = I  : 

VZr 

and 3Jn denotes the n-dimensional Euclidean space. The gradient of F will be denoted 

by the vector g where 
dF{*) ■      , « 9i =    dx    ,        t = l,2f...,n, 

and G will be used to denote the n X n matrix of second dcrivates, i.e. 

c^   = d2F{x) t = l,2,...,n 
1J       dxidxj j = 1,2,.. .,n. 

All methods considered here for solving (1.2.1) will be descent methods; that is, 

the value of the objective function F(x) will be decreased at each iteration. More 

specifically, except in the section which describes trust-region methods, we will principally 

be concerned with line-search algorithms. As a result, all of our algorithms will have the 

following general form: 

1.2.2.       Descent Algorithm 

Dl.       Given x^k\ the fcth approximation to x*, a minimum of F(x). 

D2.      Compute p(k\ a direction of search, such that pW g(k) < o. 

D3.      Find <*(*=> > 0, a scalar step-length, such that F{xW + a(fcVfc)) < 

F[xW). 
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D4.      Set x(fc+1) •«- xW + a^pW and return to step D2. 

Step D3 is called the line-search, and it will be discussed later in this chapter. For 

our purposes, step D2 will be the most significant, for the process used to compute pW 

generally classifies the entire algorithm. This computation is often based on the gradient 

or the Hessian at the point x^ (denoted by gW and G(fc\ respectively), or on information 

accumulated in previous iterations. 

A considerable amount of the work in step D2 is dependent on results from linear 

algebra. The principal theoretical results will be presented in the next section, but first 

some notational details will be discussed here. 

In general, matrices will be denoted by upper-case Roman letters (G), and their 

elements will be specified using subscripts (GtJ). Vectors will be denoted by lower-case 

Roman letters, with subscripts again being used for individual elements (g, &). Scalars 

will be denoted by lower-case Greek letters (a). A supcrfix Ton a matrix or vector denotes 

transpose. \\y\\ denotes the Euclidean norm of the vector y. Other than those vectors 

already mentioned, in the context of optimization there are two additional vectors which 

have special meaning. These are 

s(fc) _ ^(fc+i) _ ^(fc)^ 

the difference between the successive estimates of the minimum, and 

the difference between the successive gradient values. 

In order to be able to terminate algorithm (1.2.2), it is important to know how to 

identify x*, the point which minimizes the function F. The following theorem gives 

necessary and sufficient conditions for the minimum of an unconstrained real-valued 

function. 

Theorem 1.2.3 (a) Let x* be a relative minimum point of the twice continuously 

differentiable function F. Then g(x*) = 0 and G(x*) is positive semi-definite. (See 

section 1.3 for a definition of positive semi-definite.) 

(b) Suppose that F is a twice continuously differentiable function mapping from S?n 

to 5R. Suppose in addition that x* is a point in SRn for which g(x ) = 0 and G(x ) is 

positive definite. Then x* is a strict relative minimum point of F. 
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1.3.     Basic Results in Linear Algebra 

The information in this section will be presented briefly and without proof. A much 

more complete discussion can be found in Wilkinson [1965], Chapter 1. 

Definitions: 

1. A matrix A is symmetric if A = AT. 

2. A symmetric matrix A is positive definite if 

yTAy > 0,        V</ ^ 0. 

3. A symmetric matrix A is positive semi-deßnite if 

yTAy > 0,        Vy. 

[Similar definitions exist for negative definite and negative semi-deßnite 

matrices. A matrix falling into none of these categories is called indeFinitc.] 

4. A set of vectors {ai,..., on} is linearly independent if 

n 

E hai = ° 

implies that 

£,=0,        j=l,...,n. 

5. The space spanned by a set of vectors is the space generated by all 

linear combinations of those vectors. 

6. The rank of a matrix A is equal to the maximum number of linearly- 

independent rows. 

7. The range of a matrix A, denoted by R(A), is the space spanned by 

the columns of A. 

8. The null space of a matrix A, denoted by N(A), is {x \ ATx — 0}. 

9. The condition number of a non-singular matrix A is defined to be 

K(A)^\\A\\.\\A-% 

where ||»|| is the 2-norm of a matrix. 

5 



10. A matrix A is lower (upper) triangular if 

A is unit lower (upper) triangular if, in addition, An = 1,    Vt. 

Results: 

1. Let A be an n by n symmetric matrix. Then there exist n orthonormal 

vectors vi,...,vn and n scalars Xi,..., Xn such that 

Avi = \{Vi,        i = 1,..., n. 

The vector V{ is an eigenvector of A, and X, is its associated eige/iva/uc. 

2. A symmetric matrix of rank r has r non-zero eigenvalues. 

3. A positive-definite matrix has positive eigenvalues. 

4. A symmetric matrix A is positive definite if and only if it can be 

factored as 

A = LDLT, 

where L is unit lower triangular and D is diagonal with positive diagonal 

entries. [Cholesky factorization] 

1.4.     Line Search Techniques 

As in the previous section, this will only be a brief discussion of the topic of line 

searches. More complete information can be found in Gill and Murray [1979] and [1974b]. 

Step D3 of algorithm (1.2.2) requires that a scalar a be found such that 

F(x + ap) < F{x). (1.4.1) 

[The superscript W will be dropped for reasons or clarity.] One way to achieve this is to 

require that 

Fix + ap) = min Fix + äp). (1.4.2) 
5>o 

Although necessary for 1-dimensional minimization, this condition is overly stringent in 

a higher-dimensional context (and of little use for constrained optimization). 

At the opposite extreme, it is not sufficient to choose just any value of a such that 
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(1.4.1) is satisfied. To see this, consider the simple 1-dimcnsional problem: 

F(x) = x\ 

x<l> = 2, 

p(fc) = -1,        VJfc, 

QW = 2"fc. 

It is easily seen that the sequence {x^} satisfies (1.4.1) but that 

lim xW = l^fl = i*. 
k—>oo 

In order to efficiently minimize functions of several variables, and also to be able 

to guarantee convergence of optimization algorithms, a compromise between these two 

positions has been found to be effective. In this regard, two concepts have been shown to 

be of considerable value. The first is that the search direction must not become arbitrarily 

close to being orthogonal to the steepest descent direction (that is, the gradient). Usually 

this is achieved by the method used to choose the search direction. 

If this property is satisfied, then the second condition is that the function F[x) 

must be "sufficiently" reduced at each iteration. This condition is often achieved by an 

appropriate choice of step length within a line search algorithm. One such algorithm is 

presented here. 

(1.4.3)       Line search algorithm 

Let {otj} define a sequence of points that tend in the limit to the minimum 

of F(x) along p. (If F(x) is smooth, this sequence can be computed by 

means of some safeguarded polynomial interpolation algorithm.) Let t be 

the index of the first member of this sequence such that 

\g(x + atp)Tp\ < -r)gTp (1-4-4) 

where Tf (0 < rf < 1) is some constant scalar. Let fi (0 < fi < ^) be 

another constant scalar. Find the smallest non-negative integer r such 

that 

F[x)-F{x + 2-ratp) > -2-ratfig
Tp (1.4.5) 

and set a = 2-rat.| 

If a is computed according to this rule, it can be shown (Gill and Murray [1973a]) 
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that 

F(x) - F(x + ap) > 4>(j^), 

where <£ is a real-valued function such that, for any sequence {cjt}, 

lim <f>(ck) = 0        implies lim Cfc = 0. 
fc->oo k-too 

An important property of conditions (1.4.4) and (1.4.5) is that if p, is chosen as a small 

value (say 10-4) then, unless F(x) is a pathologically ill-behaved function, any value of 

at satisfying (1.4.4) automatically satisfies (1.4.5) with r = 0. In this case the line search 

algorithm reduces to finding a scalar a such that 

\g(x + ap)Tp\ < -r}gTp. 

The value of 77 can be specified by the user and can be used to give a step length that is 

well-suited to the problem being solved. Tf rj is chosen as 0.9, the algorithm will generally 

compute a "crude" value of a, provided it satisfies (1.4.5). This value will often be a0, 

the initial guess for a. If rj is chosen as zero, a will satisfy (1.4.2), the condition for an 

exact line search. 

In order for certain asymptotic convergence rates to be attained, it is often necessary 

that ultimately a = 1 for VA; > K. For this reason, a0 = 1 is a common feature of line- 

search algorithms, but it is certainly not the only possibility. Davidon [1959] suggested 

the following choice for (XQ 

ao = -2(FW - iT(est))/&(A:)Tp(fc) 

whenever the quantity on the right hand side is less than or equal to 1. Here, F(est) is a 

user-specified estimate of the function value at the solution. (It is common for the user 

to have some a priori information about the function F. If not, the choice ao = 1 can 

be used.) This formula has been found to be quite successful computationally. 

For nonlinear conjugate-gradient algorithms (described in the next chapter), a fur- 

ther condition in the line search is required in order to insure the descent property of the 

search direction p(fc+1) at the next iteration. Details of these requirements can be found 

in Gill and Murray [1979]. 

One final remark that is relevant to the general topic of this thesis concerns the 

computation of the sequence {ay} in (1.4.4).  In many situations, this sequence will be 
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computed using function and gradient values. However, when the gradient and function 

are expensive to compute relative to the cost of computing the function alone (i.e. twice 

the cost), this sequence can be computed using function values only (sec Gill and Murray 

[1974b]). 

1.5.     Rates of Convergence 

In the chapters to follow, we will be concerned with the speed at which various 

algorithms converge. The following definitions will be useful for our purposes. 

1. A sequence {x^k'}, converging to x , is said to converge with Q-order 

m if 

I'm  V—, —ü < oo. (1.5.1) 
Jfc-oo ||a;(fc) - x \\m v        ' 

2. The sequence {x^} is said to converge Q-superlinearly if 

||x(fc+i) _ a;*|| 
lim  1L LJI = 0. (1.5.2) 

3. The sequence {i'*'} is said to converge with R-order m if 

\\xW-x*\\<ßk       fc = 0,l,... (1.5.3) 

where {ßk} is a sequence that converges to zero with Q-order m. 

The most important instances of definition 1 arc m = 1 (Q-linear convergence) 

and m = 2 (Q-quadratic convergence). Because Q-order rates of convergence are more 

important for our purposes, the label Q- will often be dropped in the discussions to follow. 

Only R-order rates will be distinguished. 

For a more complete treatment of rates of convergence, see Ortega and Rheinboldt 

[1970], pp. 281-298. 



2     The Basic Methods 

2.1     Introduction 

Although we have so far mentioned only three basic classes of methods for solving 

the unconstrained minimization problem (1.2.1), within each class there are a great many 

varieties, and choice of the exact algorithm to use is not always easy. In the absence of 

other considerations, Newton's method is almost always the method of choice, at least 

in its modern safeguarded versions. Other methods can be considered as compromises to 

Newton's method. 

The three classes of methods will be discussed from that perspective, since it leads 

naturally to the discussion of truncated-Newton methods in the next chapter. Newton's 

method will be discussed first; this will be followed by descriptions of quasi-Newton and 

conjugate-gradient methods. In the last section, extensions and adaptations of these 

algorithms to larger classes of problems are presented. 

It should be pointed out that all the methods in this and the next chapter will be 

developed as linesearch algorithms. Alternative versions of these methods employing 

trust-region schemes will be presented in a later chapter. 

2.2     Newton's Method 

Since it is impossible to have a direct method for solving the unconstrained mini- 

mization problem (1.2.1) in general (such a direct method would imply that there existed 

a direct method for finding roots of arbitrary polynomials), we must rely on iterative 

methods. In the case of minimization, these usually take the form of finding some ap- 

proximation to the objective function F, computing its minimum, and then using this 

point to compute a better approximation to the minimum of the original function. 

For Newton's methods, this approximate function is based on the expansion of F in 

a Taylor series: 

F(XW + p) = ir(x(0)) + pTVF(xW) + iprV2F(z(°))p + R3(x
(0),p), (2.2.1) 

where R3(x
(0),p) represents the higher-order terms in the series. From now on, we will 

denote the gradient of F as 

g = g(x) = VF(x), 
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and the Hessian as 

G = G{x) = V2F{x). 

To derive Newton's method, we drop the remainder term in (2.2.1). If we denote F^ = 

F(i(°)), then 
min F{x) = min F{xm + p) 

x p 

f« min Q{p) 

(0) ■ r, 

(2.2.2) 

= min 
p 

FW + gT
P+iP

TGp 

We have now approximated F by a quadratic function. Taking the derivative of Q{p) in 

(2.2.2) and setting it equal to zero, we obtain the so-called Newton equations for the step 

to the minimum of the quadratic function: 

Gp = -g. (2.2.3) 

This formula, and its equivalent version in (2.2.2) will be fundamental in the work to 

follow. 

In its basic form, Newton's method cannot be used, since it is not always defined 

or meaningful. For example, away from the solution x , there is no guarantee that the 

matrix G will be positive definite. This means that (2.2.3) may not have a solution, or 

that the minimum in (2.2.2) may not exist. Also, we are insisting that the search direction 

p be a descent direction, i.e. pTg < 0, which may not be true if G is not positive definite. 

Many authors have suggested ways of safe-guarding Newton's method so that the 

search-direction will be appropriately defined at each iteration. The most successful 

of these schemes involve replacing G by a related positive-definite matrix (see Murray 

[1972]). 

Indefiniteness is usually detected and corrected by computing and, if necessary, ad- 

justing some decomposition of the matrix G. Greenstadt [1967] proposed using a spectral 

decomposition and replacing negative eigenvalues with their moduli. Unfortunately, this 

is a very expensive operation—and frequently unnecessary as G is often positive definite. 

Indefiniteness can also be detected using a Cholesky factorization (or one of its variants). 

Details of this work can be found in Gill and Murray [1974a], Bunch and Parlett [1971], 

Dax and Kaniel [1977], etc. 

It is not enough to replace G by any positive-definite matrix G. If the norm of 

E = G — G is large, then ||p|| will be small, and the algorithm may not converge. It is 
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thus important to be able to bound the norm of the modification matrix E. 

Simply replacing G by a positive-definite matrix is not sufficient to define a method. 

Other problems can also occur during a minimization process. For example, it is not 

always clear how to obtain a descent direction at a saddle point, that is, when g = 0 

and G is not positive definite. The methods described in the previous paragraph can all 

be used to compute a direction of negative curvature in this event. Such a direction is 

defined by the condition 

pTGp < 0. 

An advantage of the Gill and Murray approach is its simplicity, and there is no 

evidence that it is less efficient than alternative methods. Since the truncated-Newton 

algorithm in the next chapter owes much to this method, some details of the algorithm 

will be discussed briefly here. 

This algorithm is based on the result that a symmetric matrix G is positive definite 

if and only if it can be factored in the form 

G = LDLT, (2.2.4) 

where D is a diagonal matrix with positive diagonal entries and L is a unit lower triangular 

matrix. This suggests the following technique. Attempt to compute the Cholesky 

factorization (2.2.4) of G. If at any stage Da turns out to be negative or zero, add some 

positive quantity En to Gn to correct the problem. Monitor the size of the elements of 

L, and if they are "too large," further increase the size of En- Now continue with the 

factorization. 

Exact formulas for this process can be found in the Gill and Murray paper. The end 

result is that we have computed the Cholesky factorization of 

G + E = LDLT, (2.2.5) 

where E = diag(J5,-,-). It can be shown that E is identically zero whenever G is 

"sufficiently positive-definite." Since it would probably be necessary in any case to, com- 

pute the factorization (2.2.4) to solve the Newton equations (2.2.3), the factorization 

(2.2.5) can be considered as a natural by-product of the basic Newton method. Using 

this factorization, we obtain the modified-Newton equations for the step to the minimum 

of the modified quadratic" function: 

(G + E)p = -g. (2.2.6) 
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The resulting modificd-Newton algorithm can be described as follows: 

(2.2.6)      Modified-Newton Algorithm 

Nl. Given x. 

N2. Compute p from (2.2.3), (2.2.6), or related formulas. 

N3. Find a such that F[x + ap) < F{x). 

N4. Set x *— x + ap and return to step N2. 

This algorithm has been left deliberately vague in order to allow for the many possibilities 

discussed above for steps N2 and N3. 

Under a variety of conditions, it can be shown that the above algorithm is globally 

and locally quadratically convergent. Although more general results can be found (see, 

for example, Ortega and Rhcinboldt [1970], pp. 421-430), the following theorem will be 

adequate for our purposes. 

Theorem (2.2.7) Suppose that F : 3Jn —>• 9? is twice continuously differentiate in an 

open convex set D and that there is an x in D such that g(x ) = 0 and G(x ) ispositive 

definite. Then there is an open set S which contains x* such that for any i^ G 5 the 

Newton iterates are well-defined, remain in S and converge to x . Moreover, there is a 

constant ß such that 

||a;(*+i) _ a:*|| < ß\\xW - a;*||2, jfc = 0,1,.... 

2.3.     Quasi-Newton Methods 

The methods of this section have also been referred to in the literature as secant 

methods, variable-metric methods, etc. Here, we will refer to them as quasi-Newton 

methods. 

In the previous section we computed the search direction p^k> as the minimum of a 

strictly convex quadratic function or, equivalcntly, as the solution of the system of linear 

equations (2.2.6). Both of these methods require the Hessian matrix G^k\ It might be 

hoped that similarly successful methods might be derived from minimizing 

Q(p) = ipTBWp + pTgW, (2.3.1) 

or equivalently, solving 

B^p = -gW, (2.3.2) 
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where B^ is some suitably chosen approximation to G^k\ 

In one dimension, there is a well-known algorithm of this type, called the secant 

method. In that method, 

iply ing through by s^ gives 

B(k+i)8(k)==yW^ (233) 

Considering the methods derived from (2.3.2) as extensions of the one-dimensional 

secant method, it is natural to insist that (2.3.3) be satisfied in the n-dimensional case as 

well. In this context, (2.3.3) will be referred to as the quasi-Newton condition and will 

be usd to define this class of methods. 

In n dimensions, (2.3.3) is insufficient to uniquely specify B^k+1^ and further restric- 

tions are required to insure that an algorithm of this type is well-defined. Although the 

historical development of these methods was somewhat haphazard, it is now known that 

all the major quasi-Newton methods can be derived in the following fashion: 

(2.3.4)      Quasi-Newton Update 

Ul.      Given flW. 

U2.      Choose a set of properties P which i?(fc+1) must preserve. (Some 

typical choices are symmetry, positive-definiteness, a particular sparsity 

pattern, etc.) 

U3.      Choose a matrix norm ||-||JW. 

U4.      Define i?(fc+1) as the matrix which satisfies (2.3.3), preserves the 

properties P, and which minimizes ||I?(fc+1) — JB^HAT. 

Various specific updates are then obtained by specifying the set of properties P and by 

choosing a norm \\-\\M• The following few paragraphs will outline the principal updates 

in use today. [For simplicity in the following discussion, we will denote B = B^k>, B = 

A simple formula, known as Broyden's update, is obtained by letting P be void and 

by choosing ||-||Af to be the Frobcnius norm. Then 

B = B+[*^4^- (2-3.5) sTa 
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For solving systems of non-linear equations, (2.3.5) is quite satisfactory, but for 

function minimization it is inadequate. For example, because the Hessian matrix is 

symmetric, it would be desirable to insist that the update formula have the property of 

hereditary symmetry; that is, that B be symmetric whenever B is. 

Two choices for ||-||M lead to the two following symmetric updates. If ||-||w is chosen 

as the Euclidean 2-norm, then the symmetric rank-one formula is obtained: 

On the other hand, if ||-||jvf is chosen to be the Frobenius norm, then the Powell Symmetric 

Broyden (PSB) update is obtained: 

B^-B l  {v-Bs)BT+a{y-Bs)T     (y-Bsfs    T 
BPSß -B+ -5J (^s)2-8S • (2-3J) 

Another property of considerable significance is hereditary positive-definiteness. If 

the matrix B is guaranteed to be positive definite and bounded, then the search direction 

is guaranteed to be a descent direction. If a positive-definite approximation is not chosen, 

then modification schemes similar to those necessary for Newton's method would need 

to be invoked. Since G is positive semi-definite at the solution, the restriction that B be 

positive definite will not asymptotically prevent superlinear convergence. 

The results for positive-definite updates are not quite as simple as for symmetric 

updates. Again, choosing ||-||M to be the 2-norm or the Frobenius norm leads to the 

following two update formulas. But in this situation, the vectors y and s are no longer 

arbitrary. For the updates to retain positive-definiteness, it is necessary that yTs > 0. 

This property can be assured to hold by performing a sufficiently accurate line search. 

With this in mind, then, the two updates are, with the 2-norm (the Davidon-Fletcher- 

Powell (DFP) update): 

{y - Bs)yT+ y[y - Bs)T     {y-Bs)Ts    T 

yTa {yTs)2 -ÖDFP = B +  Y —yy1 (2.3.8) 

and with the Frobenius norm (the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update): 

£BFGS - B + ^r -     sTßs    . (2.3.9) 

Computationally, it has been found that (2.3.9) is the most successful update known for 

general minimization (see Gill, Murray, and Pitfield [1972]). 
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A quasi-Newton approximation can be initialized in a number of ways. The simplest 

choice, and the only choice in the absence of addition information about the Hessian, 

is to set B^ = I. If it is feasible to compute some second-derivative information, 

this can also be used to initialize the approximation, as can information from previous 

minimization steps, if the problem being solved is one of a sequence of similar problems. 

If a trust-region strategy is being used in combination with the quasi-Newton method, 

then the bounds on the variables can be used to derive an initial approximation to the 

Hessian (see Powell [1970]). 

To compute the search direction, it is necessary to solve the system of linear equa- 

tions (2.3.2). It may appear that this will require 0{n3) operations at each iteration, but 

actually, it is possible to reduce this to 0[n2) operations in either of two ways. 

The first observation is that since all of the update formulas are of low rank, it is 

simple to apply the Sherman-Morisson formula and obtain low-rank updates for H = 

B"1 (see Stewart [1967]). Using the inverse update, the solution of (2.3.2) would amount 

to no more than multiplication by the matrix //, an 0(n2) process. However, this is 

unstable. •      • 

The second idea, and this is what is used in the best algorithms today, is to update 

a factorization of B rather than B itself. For example, if a symmetric approximation B 

is stored in the form 

B = LLT, 

then solution of (2.3.2) involves only two back-substitutions, again an 0(n2) process. 

Details of how various matrix factorizations can be updated efficiently can be found in 

Gill, Golub, Murray and Saunders [1974]. 

Under fairly mild restrictions, quasi-Newton methods can generally be shown to 

exhibit global and superlinear convergence. The following theorem (from Dennis and 

More [1977], page 82) is typical and adequate for our purposes. 

Theorem 2.3.1.       Let F : tRn -*■ 5R be twice continuously differentiablc in an open 

convex set D, and assume that g[x*) = 0 and that G(x*) is positive definite for some x 

in D. Suppose in addition that 

\\G(x)-G(x*)\\<1\\x-xt\\ 

for some constant 7 and for all x in D. Suppose that the algorithm (1.2.2) is implemented 
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by choosing 

£?(fcVfc) = -gW 

where B^ \s obtained using a BFGS or DFP update with B<0' = /. Also, suppose that 

aW is determined using the line search formulas (1.4.4) and (1.4.5), and that 

oo 

X>(fc)-V||<+oo. 
fc=0 

Then {x^} converges superlinearly to x*.| 

2.4.     Nonlinear Conjugate-gradient Algorithms 

The  (linear)   conjugate-gradient  algorithm   of Hestenes  and   Stiefel   [1952]   was 

originally designed to solve the system of linear equations 

Ax = b (2.4.1) 

where A is a positive-definite square matrix.  As indicated earlier, this is equivalent to 

minimizing the quadratic form 

.   Q{x) = \xTAx - xTb. (2.4.2) 

For clarity, we will give an outline of the algorithm here.  A more complete derivation 

from another point of view can be found in section 3.2. 

The solution x of (2.4.1) will be computed as a linear combination of A-conjugate 

directions. That is, 

x = X) <*iPi (2-4-3) 
t 

where 

pfApj = 0,        for    i 7^ j. 

Notice that the concept of A-conjugacy is equivalent to the concept of orthogonality if 

the inner-product is defined as 

(pi,P2) = pfAp2. 

This implies that any set of A-conjugate vectors will also be linearly independent. 

If the representation (2.4.3) for x is substituted into (2.4.2), then minimizing Q(x) 
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becomes equivalent to solving a sequence of one-dimensional minimization problems: 

min 
X 
in Q(x) = min Q\J>2 «jfcPfcJ 

= min |i(£ atPl) A(J^ oyp,-) - (^ <*iPi) bj 

= J^ f min {iat
2pjkpi - a<pf6} J 

= min 
a 

(due to the A-conjugacy of the vectors p,). Each term in the final summation is a 

minimization problem involving only the coefficient a,, so that the original minimization- 

problem (2.4.2) has been completely decoupled into a set of trivial one-dimensional 

minimization problems. 

The linear conjugate-gradient algorithm is quite simple to describe. Let x0 be some 

initial guess of the solution to (2.4.1). At each stage, compute the current residual rjt = 

b — Axk- If Tk = 0, accept Xk as the solution of (2.4.1) and terminate the iteration. 

Otherwise, compute a new ^-conjugate direction p/t (using the current residual and the 

previous yl-conjugate direction Pk-i), and minimize Q[x) along the line which starts 

at Xk and moves in the direction pk (this corresponds to minimizing one term in the 

summation above). 

Although the conjugate-gradient algorithm is described as an iterative method, it will 

terminate after a finite number of iterations in exact arithmetic. If m is the dimension of 

the system of equations, then there can be at most m A-conjugate vectors {pfc} (because 

yl-conjugate vectors must also be linearly independent). Since the solution x to (2.4.1) is 

expressed in terms of {pit}, the conjugate-gradient algorithm must converge in at most 

m iterations. 
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One computational form of the linear conjugate-gradient algorithm is as follows: 

Given an initial guess XQ. 

For k = 0,1,... 

rk = b - Axk 

ßk = rZrk/rZ_fk-.u        ß0 = 0 

Pk = Tk + ßkPk-l 

<xk = rlrk/pZApk 

Zjfc+l = %k + <*kPk' 

A useful property of this algorithm is that the vectors {rk} are mutually orthogonal: 

rfrj = 0, if   »' 7^ j, 

and the vectors {pk} are mutually ^-conjugate: 

pjApj = 0,        if   t 7^ j. 

It is a relatively simple problem to adapt the linear conjugate-gradient algorithm 

to solve general nonlinear problems. Nonlinear conjugate-gradient algorithms are based 

on the Newton formulas (2.2.2) and (2.2.3). In this case, the underlying assumption is 

that F(x) is a quadratic function, i.e. a function with a constant Hessian matrix. The 

formulas for the linear conjugate-gradient algorithm are then applied to the nonlinear 

function. 

The nonlinear conjugate-gradient algorithm computes a new search direction using 

the formula 

.p(fc+1) = -ff(
fc+1) + /j(fc)p(fc). .   (2.4.4) 

The determination of a^k> is now a univariate minimization problem. Various choices for 

the scalar ß^k> lead to the various versions of the algorithm. The three principle formulas 

(all equivalent in the case where F really is a quadratic function) are: 

1. Fletcher-Reeves 

ßW = \\gt^)\\lß^)\\l (2.4.5) 

2. Hestenes-Stiefel 

ßW = yW TgV<+V/yWTpW (2.4.6) 
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3. Polak-Ribiere 

ßw = yw Vfc+1)/lb(fc)lli- (2-4.7) 

In the non-quadratic case, these formulas have quite distinct properties. For example, 

(2.4.6) guarantees that yW p(fc+1) = 0 (a property of the quadratic case) irrespective of 

the accuracy of the line search or any possible non-quadratic behavior of the objective 

function. Also, Powell [1977] has shown that (2.4.5) may lead to slow convergence in the 

general nonlinear case when exact line searches are performed. 

In the quadratic case, the conjugate-gradient algorithm will theoretically converge 

in n iterations and will have generated n linearly independent search directions p'fe). 

For this reason, Fletcher and Reeves [1964] suggested abandoning (2.4.4) after a cycle 

of n line searches, and setting p(k+1) as the steepest descent direction g(k+iK This 

strategy is known as restarting. Since then, Powell [1977] and others have suggested 

other restarting strategies, and these have considerably improved the performance of 

nonlinear conjugate-gradient algorithms. 

McCormick and Pearson [1969] have shown that, for a wide class of functions, the 

restarted conjugate-gradient algorithm is n-step superlinearly convergent, i.e. 

II    (nfc+n) _* II 

,lim    n im,)     V = °- (2-4-8) fc-»oo    ||a;lnfcJ — x || 

This result depends critically on the use of restarting.   Powell [1976] has shown that 

algorithms that do not contain a restarting strategy almost always converge linearly. 

The result (2.4.8) may be somewhat misleading. In general, a successful conjugate- 

gradient algorithm should converge in In to 3n iterations, so that asymptotic behavior 

of the sort described by (2.4.8) would never be observed. Thus, for practical purposes, 

nonlinear conjugate-gradient algorithms can be considered to exhibit a linear rate of 

converge, and the motivation for restarting is not to achieve a superlinear rate of con- 

vergence. 

2.5.     Adaptations and Extensions of the Traditional Methods 

The three main classes of methods are each associated with a particular class of 

problems to which they are ideally suited. The correspondences are as follows: 

1.      Newton's method: small and moderately sized problems where the 
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Hessian matrix is easy or cheap to compute. 

2. Quasi-Newton methods: small and moderately sized problems where 

the Hessian is difficult or expensive to compute. 

3. Conjugate-gradient methods: large problems. 

For small problems, whenever possible a user would prefer to use Newton's method over 

quasi-Newton methods, and quasi-Newton methods over conjugate-gradient methods, 

because the relative efficiencies of the former methods are so much better. It should 

be remembered, however, that for particular problems we cannot be assured that a 

given method works better than another. There are reasons to suppose that the relative 

efficiencies of the three approaches are different for large problems, when it is possible 

to still apply all three methods (see Thapa [1980], Gill and Murray [1979]). 

Much work has been done to extend Newton and quasi-Newton methods to larger 

classes of problems, and to modify conjugate-gradient methods to give them some of the 

properties of the other two classes of methods. 

Newton's method is relatively easy to extend to large problems. At each iteration! 

it is necessary to solve a system of linear equations and, provided the Hessian is sparse, 

this can be achieved using sparse matrix methods (see, for example, Bunch and Rose 

[1976]). For most problems, however, second derivative information will not be available. 

By using a finite-difference approximation to G, Newton's method can be extended to 

the case where only first derivatives are known. In the dense case, this implies at least 

n additional gradients would be required. For large problems or even moderate-size 

problems, this is a prohibitive cost. Fortunately, if the Hessian is sparse it can be 

approximated in considerably less than n gradient evaluations. Details of this work can 

be found in Thapa [1980], Powell and Toint [1979]. 

A second possibility is to hold G fixed for several iterations. This idea has been 

explored by Brent [1973], but has been found to be less effective than using quasi-Newton 

methods (sec, for example, Broydcn [1971]). For special problems this method can work 

well. When the cost of factoring the Hessian matrix dominates the cost of computing it, 

or when the Hessian matrix is nearly constant, this can be the method of choice. 

The extension of quasi-Newton methods to large problems is much more complex. 

The updates given in section 2.3 will not in general give a sparse Hessian approximation 

even if the actual Hessian is sparse.   To overcome this deficiency, sparse updates have 
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been developed. This involves adding a sparsity condition in step U2 of the update 

algorithm (2.3.4). Schubert [1970] developed a sparse update for nonlinear systems of 

equations. A useful update for optimization was derived independently by Marwil [1978] 

and Toint[l978]. With these updates available, sparse matrix techniques are then used 

to solve the system of equations (2.3.2) for the search direction p. 

Currently, it appears that sparse quasi-Newton methods are chiefly of theoretical 

interest. First of all, the sparse updates are no longer of low rank (in fact, they are in 

general of rank n) so that the converse of the dense case is now true and quasi-Newton 

methods take more algebraic operations per iteration than sparse Newton methods. 

Secondly, although they can be shown to converge theoretically at a superlinear rate, 

the asymptotic regime is in practice slow to set in, and these methods are usually less 

efficient than sparse-Newton methods (see Thapa [1980]). 

Steihaug [1980] has derived a class of sparse approximate quasi-Newton updates, 

and has shown that algorithms based on them can be made to converge globally and 

superlinearly. This class is obtained by computing a sparse quasi-Newton update itera- 

tively using the linear conjugate-gradient algorithm. No practical experience has yet 

been reported on these methods. 

Although both Newton and quasi-Newton methods will continue to be improved, 

they critically depend on the assumption that the Hessian matrix is sparse. For uncon- 

strained problems, this is almost always true. For constrained problems, however, the 

equivalent equations that require solution involve the projection of the Hessian matrix. 

Although the Hessian matrix and the matrices defining the projection may be sparse, the 

projected Hessian is often dense. Except in special cases, for such problems the direct 

application of Newton or quasi-Newton methods (as we have described them so far) is 

unlikely to be successful. 

Because conjugate-gradient methods are so frugal in their storage requirements, 

attempts have been made to modify them to make them behave more like quasi-Newton 

methods. This group of methods is generally referred to as limited-memory quasi-Newton 

methods. Since the standard quasi-Newton updates described in section 2.3 only involve 

a few low-rank updates to an initial matrix, it is possible to apply them to a vector 

and only store the few vectors needed to define the low-rank portion of the update. The 

storage available determines the number of updates used. Because the size of the problem 
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prevents the solution of the system of equations (2.3.2), inverse updates are generally 

used in this application. Details of these algorithms, as well as a great many numerical 

examples illustrating their performance, can be found in Gill and Murray [1979]. 

Another technique which has been used to improve the performance of nonlinear 

conjugate-gradient algorithms is preconditioning. These algorithms will converge in one 

iteration if f(x) is a quadratic function with Hessian matrix equal to the identity. The 

idea behind preconditioning is to use information about the problem (obtained either a 

priori, or dynamically as the problem is being solved), to modify the original problem 

at each iteration so that it behaves more like this model problem, and hence is easier to 

solve. Because preconditioning is an idea of such general usefulness, it will be discussed 

in considerably more detail in Chapter 5. 

Efforts have also been made to extend conjugate-gradient methods towards Newton's 

method. This work comes under the category of truncated-Newton methods, and is the 

main subject of this thesis. The basic theory behind these algorithms will be outlined in 

the next two chapters. 
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3     Truncated-Newton Methods 

3.1.     Introduction 

In the last chapter, we discussed the three traditional classes of methods for solving 

the basic unconstrained minimization problem (1.2.1). All the methods, as we saw, were 

based on the solution of the Newton equations (2.2.3). Truncated-Newton methods are 

no exception. In a sense, they are the converse to quasi-Newton methods. Quasi-Newton 

methods compute a search direction by exactly solving an approximation to the Newton 

equations, whereas truncated-Newton methods do so by approximately solving the exact 

Newton equations. 

There are certain advantages to this approach. First of all, we are always dealing 

with exact second-derivative information; in other words, the sub-problem we are solving 

is more closely related .to the actual problem we are interested in. Secondly, since we 

only need an approximate solution to (2.2.3), we can use an iterative method to solve 

it. Iterative methods generally have very low storage requirements, and do not explicitly 

require the Hessian matrix. 

In the next section, we will briefly describe these methods, mention some of the 

iterative methods that have been proposed for solving (2.2.3), and indicate some of the 

problems that can arise. In the final sections, the linear conjugate-gradient and related 

algorithms will be derived via the Lanczos algorithm, and it will be shown how to use 

these algorithms to overcome the above-mentioned problems. Further aspects of this 

class of algorithms will be left to later chapters. 

3.2.     Basic Description of the Method 

Because Newton's method is based on a Taylor series expansion near the solution 

of the minimization problem (1.2.1), there is no guarantee that the search direction it 

computes will be as crucial far away from x*. In fact, at the beginning of the solution 

process, a reasonable approximation to the Newton direction may be almost as effective 

as the Newton direction itself. It is only gradually, as the solution is approached, that 

the Newton direction takes on more and more meaning. 

This suggests using an iterative method to solve the Newton equations. Moreover, 

it should be an iterative method with a variable tolerance, so that far away from the 
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solution, (2.2.3) is not solved to undue accuracy. Only when the solution is approached 

should we consider expending enough effort to compute something like the exact Newton 

direction. As we approach the solution, the systems of equations we are required to solve 

become progressively more similar. Consequently it is possible that a closer approxima- 

tion to the exact solution can be determined with no increase in effort by utilizing past 

information. 

Sherman [1978] suggested using Successive-Over-Relaxation (SOR). This is the 

simplest of a whole class of methods that have been found to be effective for solving 

linear systems arising in partial differential equations. However, it is difficult to get SOR 

methods to perform well on general problems. Also, they appear to be prohibitively 

expensive to use in the context of truncated-Newton methods. The number of linear 

sub-iterations required to achieve superlinear convergence increases exponentially at each 

non-linear iteration. 

Much better suited for this application is the linear conjugate-gradient algorithm. 

Although it is ideal for problems where the coefficient matrix has only a few distinct 

eigenvalues, it is guaranteed to converge (in exact arithmetic) in at most n iterations 

for any matrix. Thus, the type of exponential growth mentioned above for SOR-type 

methods is impossible, at least theoretically. Also, it can be shown that the linear 

conjugate-gradient algorithm is optimal-in a sense to be defined later. 

A requirement of both of these methods is that the coefficient matrix must be 

positive-definite. As remarked earlier, the Hessian matrix is only guaranteed to be positive 

semi-definite at the solution and may be indefinite elsewhere. Thus, whatever iterative 

method chosen to solve (2.2.3), it must be able to detect and cope with indefinite systems. 

This is very closely related to the situation with Newton's method, but in this case, we 

are not planning to perform a Cholesky factorization of the Hessian matrix, making it 

difficult to modify it directly. The next two sections will describe how to circumvent this 

problem in the case of the linear conjugate-gradient algorithm. Because the SOR-bascd 

methods are prohibitively expensive to use, even in ideal circumstances, they will not be 

considered further. 

Paige and Saunders [1975] have developed two conjugate-gradicnt-like algorithms for 

dealing with symmetric indefinite systems of equations. The first of these, SYMMLQ, is 

identical to the traditional conjugate-gradient method in the positive-definite case, and 
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is not of much interest in this context. The second, MINRES, is based on minimizing 

the norm of the residual at each iteration. It produces different iterates than the CG 

method, and has many properties of value to us here. It will be discussed in section 3.7. 

Finally, we give here a description of a truncated-Newton method in algorithmic 

form. The details of the methods used to iteratively solve the Newton equations and to 

precondition the algorithm will be given later. 

(3.2.1)       Truncated-Newton Algorithm 

TNI.   Given x^k\ some approximation to x . 

TN2. If x^ is a sufficiently accurate approximation to the minimum of 

F, terminate the algorithm. 

TN3. Approximately solve the Newton equations (2.2.3) using some 

iterative algorithm with preconditioning M(fc). M(fc) is chosen with infor- 

mation from some non-linear algorithm or from previous iterations (see 

Chapter 5). 

TN4. Using the search direction computed in step TN3, use the line 

search algorithm (1.4.3) to compute a new point i(fc+1). Go to step TN2. 

3.3     The Linear Conjugate-Gradient Algorithm 

A well known technique for the solution of large systems of linear equations is 

the linear conjugate-gradient method of Hestenes and Stiefel [1952]. This method can 

be directly applied to the Newton equations (2.2.3). The linear conjugate-gradient 

algorithm is particularly appropriate when matrix-vector products of the form G^v can 

be computed even though the matrix G^ or its factorization cannot. The conjugate- 

gradient algorithm is usually derived as a direct method, in the sense that, theoretically, 

the solution is found after n iterations or less. However, in practice the algorithm behaves 

more like an iterative method since it computes a sequence of improving estimates and 

has the potential of converging in much more than n iterations. The finite termination 

properties of the conjugate-gradient algorithm are based on orthogonality relations which 

are not valid in finite precision arithmetic. It is possible to perform extra computations 

in order to recover finite termination, but this is expensive both in terms of storage and 

in terms of operation counts.   For large problems, this is impractical.  Recent work of 
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Parlett [1980] and others has attempted to overcome this difficulty through the use of 

selective reorthogonalization. 

Although most of the literature on this algorithm refers to the solution of the 

equation Ax = b, it is felt that using this notation here would lead to unnecessary 

confusion. In order to be consistent with the other parts of this thesis, we shall solve the 

system of linear equations 

Gp = b, (3.3.1) 

where G is an n X n positive-definite matrix. We shall use {pq} to denote members of 

an iterative sequence intended to solve (3.3.1). It will be assumed that all the operations 

are performed in exact arithmetic. 

The conjugate-gradient algorithm can be derived by finding iterates that minimize 

the quadratic function Q(p) = \pTGp — bTp. 

Let pq be the g-th approximation to the minimum of Q{x) and let v\,V2,..., vq 

be q linearly independent vectors that span a subspace "Vq. The minimum of Q(x) may 

be computed by minimizing Q[x) over an expanding sequence of linear manifolds that 

eventually contains 1Stn. If V, denotes the matrix with columns vi,v2,...,vq then the 

minimum of Q(x) over the manifold pq + Vq is given by the solution of the problem 

min   Qipa + Vqw). 
west* 

If pq+Vqw is substituted into the quadratic function we find that the optimal w minimizes 

the function 

where rq = VQ(pg) = Gpq — b. This quadratic function has a minimum at the point 

—{VqGVq)~
lVqrq and consequently, the required minimum over the subspace is given 

Vq+v=Pq-Vq{VT
qGVq)-

lVT
qrq. 

Note that r,+1, the gradient of Q(p) at pq+i, is orthogonal to the columns of V, since 

V*rq+l=VT(GPq+1-b) 

= -VT
qGVq{VT

qGVq)-'V
T

qrq + VT
qrq 

= 0. 

The definition of pq+i äs a minimum over the manifold pq + "Vq has special significance 
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if each previous iterate pj is obtained as the minimum over py_i + Vy_i. In this case 

rq will be orthogonal to all the columns of Vq except the last, and the minimum on the 

subspace "V, is given by 

Pq*+i = Pq-Vq{VT
qGVq)-*VT

qrq 

= Pq + lVq{VT
qGVq)-

leq, (3.3.2) 

where 7 = —rqvq and eq is the g-th column of the identity matrix. 

Suppose that the columns of Vq are defined by the Lanczos recurrence relations 

(Lanczos [1950]). In this case we start with some vector vv vr[vl = 1, and form 

ßj+iVj+i = GVJ - otjVj - ßj-Vj-i,    a, — vjGvjf (3.3.3) 

where v0 = 0, and ßJ+i {ßj'+i > 0) is chosen so that ||vy+i||2 = 1. After the g-th step 

GVq = VqTq + ßq+1vq+lel (3.3.4) 

where 

f a\    ßi 

ßi    a2    ßz 

ßz    "3 
T = 

ßq      «« J 

VfVq = Iqt    and    VTVq+l=0. 

The process will be terminated at the first zero ßj, so that in general we assume that ßj 

is nonzero for j — 1,2,..., q. In this case V^GVq = Tq and (3.3.2) becomes 

Pq+i=Pq + lVqTq
leq 

= Pq + lVq{L
T

q)-
xD-lL-xeq, 

where Lq and Dq are the Cholesky factors of Tq. Since Lq has unit diagonal elements, 

L~leq = eq. Consequently, 

= p, + aqu„ 

(3.3.5) 
9 

quq, 
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where aq = —rqvq/dq and uq is given by the g-th column of the matrix 

Paige and Saunders [1975] show that the columns of Uq can be computed from the 

recurrence relations 

«1   =   Vl, Uq   =   Vq  -  IgUg-l, 

where /, is the (q — l)-th sub-diagonal element of the lower bi-diagonal matrix Lq. 

When the vector Vi used to start the Lanczos process is chosen as a multiple of the 

right-hand-side vector b and when xi is zero, this algorithm is mathematically equivalent 

to the Hestenes-Stiefel conjugate-gradient algorithm. The derivation here emphasizes the 

fact that a whole class of conjugate-direction methods can be generated from different 

choices for v%. 

It is well known that in general, rounding error seriously impairs the performance of 

Lanczos tri-diagonalization by causing a loss of orthogonality in the vectors {v}-}. This 

implies that the matrices VqGVq will no longer be tri-diagonal and the solution p,+i. 

over the subspace V, will be correspondingly inaccurate. The effects of this error are 

noticably reduced if the starting vector vi is taken to be a multiple of b. The reason for 

this is that, in the Paige-Saunders algorithm, each pq is algebraically of the form Vqy, 

where Tqy = ßxe\. From (3.3.4) we have 

GVqy = VqTqy + ßq+lvq+le
T

qy 

to working precision, and consequently, 

Gpq = ßxVqex + ßq+1vq+le^y 

= b + ßq+1vq+leTy. (3.3.6) 

This expression does not depend at all upon the orthogonality of the Lanczos vectors 

and indicates that pq will be the solution of a problem with right-hand side that differs 

from the true b by ßq+1vq+lejy, a quantity that will ultimately be sufficiently small. 

Unfortunately, a relationship analogous to (3.3.6) does not hold for arbitrary vi. 

In the light of these remarks, we shall always use the term Lanczos Iteration to refer 

to the recurrence relations (3.3.3) with vi defined as a multiple of 6. Although this is 

mathematically equivalent to the linear conjugate-gradient algorithm of Hcstenes and 
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Steifel, this derivation allows us to modify the algorithm in the case when the Hessian 

matrix G is not positive definite. 

3.4.     Indefinite Systems 

When the matrix G is indefinite, Paige and Saunders note that the conjugate- 

gradient method is unstable and propose a modified Lanczos method based on the LQ 

factorization of Tq rather than the Cholesky factorization. In the context of minimization, 

however, even the exact solution of an indefinite system is of little practical value since 

the resulting direction of search is likely to be a non-descent direction. As in the case of 

modified-Newton methods for the factorization of G^k\ we can make better use of the 

solution of a neighboring positive-definite system. 

The proposed method is based on the following theorem. We shall assume that 

the Lanczos iteration, when applied with exact arithmetic to a symmetric matrix G, 

terminates at iteration s (s < n), i.e., ßa+i vanishes. As in the last section, we shall use 

Tq and V, to denote the q X q and n X q matrices associated with the g-th stage of the 

Lanczos iteration. 

Theorem (3.4.1) Let Ea = diag(en,e22, • • • ,eaa) be a diagonal matrix with non- 

negative entries and let Eq denote the q X q principal sub-matrix of Ea. If the matrix 

Tq 4- Eq is positive definite with Cholesky factors Lq and Dq, the iteration 

"re„ Pi = °> Pq+l  =Pq + °qVqL, 

where oq = —v^rq/dq, solves the linear system, 

\G + VaE.V?)p = b. 

Proof     Let G denote the matrix G + VaEaV^. Using the orthogonality of the Lanczos 

vectors 

VT
qGVq = VT

qGVq + Eq 

= Tq + Eq 

= LqDqLT
q. (3.4.2) 

We can apply the ideas of Section 3.3 to generate the sequence [p-] defined by the 
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recurrence relations 
f 9 = Gpq-b 

(3-4.3) 
h+r=Pq-Vq{VT

qGVq)-"VT
qrq, 

that will solve the linear system Gp = b. 

Substituting the expression (3.4.2) for V\"GVq in (3.3.5) and using a similar analysis 

to that used to obtain (7) we find 

Pq+i =Pq + <rqVqLq
Teq, 

where aq = -v^fq/dq. The scalar vq
rrq is computed from r, using 

<f, = <(Gp,-6) 

= vT
q{GVq - 6) + v^VqEqV

T
qVq 

Since p is in the span of {v\,..., u,_i}, and Vq is an orthogonal matrix, the second term 

on the right-hand side vanishes. This proves the theorem. | 

Corollary (3.4.4)       The vector p obtained from the recurrence relations defined in 

Theorem 1 satisfies the positive-definite system 

■    [G + VEVT)p = b, 

where ||^£Fr|| = 

Proof If s is equal to n the corollary follows trivially. If s < n then V will be 

the matrix [V, V), where V is the orthogonal complement of Va. The remaining n - s 

diagonal elements of E are arbitrary and may be chosen so that A + VEVT is positive 

definite. | 

The modified Lanczos method may be applied directly to the Newton equations 

(2.2.3). When exact arithmetic is used and the Lanczos iteration is continued until ßq+l 

is zero (i.e., q steps are computed), the nonlinear algorithm is a modified Newton method 

with a positive-definite approximate Hessian 

G<*>+ /?<*>, 

where flW is the matrix VqEqV*  Note that, unlike the modification produced by the 

31 



direct application of the modified Cholesky factorization, flW is not a diagonal matrix. 

The orthogonality of the Lanczos vectors implies that 

\\VqEqVT\\ = ||jg|. 

Consequently, when the diagonal modification to Tq is small, the modification to G^ 

will be small also. 

The truncated Newton method of Dembo and Steihaug [1980] "solves" (2.2.3) by 

performing a limited number of iterations of the linear conjugate-gradient method. 

The iterations are terminated ("truncated") before the system is solved exactly. The 

final iterate of the truncated sequence is then taken as an approximate solution of 

(2.2.3). If a single linear iteration is used, pW will be the steepest-descent direction 

—gW; if the sequence is not truncated, p^ will be the solution of (2.2.3). Thus, the 

algorithm computes a vector that interpolates between the steepest-descent direction and 

the Newton direction. 

Dembo and Steihaug showed that, if G^ is positive definite and the initial iterate 

of the linear conjugate-gradient scheme is the steepest-descent direction — g(k>, all suc- 

ceeding linear iterates will be directions of descent with respect to F[x). 

When G^ is not guaranteed to be positive definite, pW may not be a descent 

direction. We propose that the modified Lanczos algorithm be used to compute the 

direction of search. The following theorem indicates that the direction of search obtained 

by terminating the modified Lanczos scheme will always be a direction of descent, 

irrespective of the definiteness of G^k\ 

Theorem (3.4.5) Let {pq} denote the sequence of iterates computed by the modified 

Lanczos algorithm with po equal to the zero vector, and assume that g(k> 7^ 0. Then 

9{k)TPq < 0 f°r all q > 0. 

Proof     When po *1S zero, pq (q > 0) is the solution of the minimization problem 

min    lpJ{GW + nW)p + gWTp 

where fi^ is some modification to G^ chosen so that G^ + f)W \s positive definite. 

Thus 

p. = -*Vi(^-i(c(fe) + ß(fc,)Vi)~ Vi^- 
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Direct pre-multiplication by gW   gives 

9{k)Tpq = -lfik)TVr-l{Vl_1{GW +nW)Vq_iy
1VT_lgW < 0, 

since by construction, Vq_t(G^ + 0^)Vq_x is positive definite. | 

3.5.     Computing a Modified Factorizaton of a Tridiagonal Matrix 

At the first stage of the Lanczos process we need to find the Cholesky factorization 

of the 1 X 1 "matrix" given by 

Tt = (ai). 

If A is not positive definite, ai may be negative or zero, and it is replaced by 

5i = max{ai,6}, 

where 6 is a pre-assigned small positive constant. This is an allowable "diagonal" 

modification to T\ since 

äi = an + pi, 

where pi = max {0,6 — a>i}. The introduction of the constant S is necessary to bound 

the factorization away from singularity. Usually 6 will be a multiple of the relative 

machine precision. 

At the second stage of the algorithm we need the modified factorization of the matrix 

/öl     fa \ 
(3.5.1) 

Let the Cholesky factors of this matrix be written as 

(1 ° Ydl ° V1 h] 
V h   1 A 0    d2 A 0    1 ) 

Straightforward application of the Cholesky factorization to (3.5.1) gives d\ = äi, d2 = 

m&x{6,<f>}, and l2 = ß2/öci, where <$> = a2 — ß2/ön- If <f> is negative, the matrix is 

indefinite and a diagonal correction must be made in order to ensure sufficient positive 

definiteness. The smallest modification to the (2, 2) element of (3.5.1) that maintains 

positive definiteness results from redefining d2 as 6. This modification adds the quantity 

—<f> + 6 to the second diagonal element of (3.5.1).  Unfortunately, this algorithm has a 

33 



serious disadvantage, as the following example will illustrate. 

Consider the Cholesky factorization of the matrix 

-c :> (3.5.2) 

In this case, <}> is the large negative quantity 1 — 1/6 and the diagonal d2 is set to 6. This 

gives the factorization 

U   IAO  Jlo   Jvi  6 + U' 
Note that, although we have made the smallest allowable modification to d2, we have 

produced a very large diagonal correction and the modified matrix is in no way "close" 

to the original. This has occurred because the lower-triangular element has been allowed 

to become large. 

This problem does not arise when using the Gill-Murray modified Cholesky fac- 

torization (Gill and Murray [1974a]) since the diagonals are adjusted so as to give lower- 

triangular elements that are bounded in magnitude by an a priori bound. However, in 

order to compute this bound it is necessary to determine an accurate bound on ||G|| 

which may not be possible or convenient if G is large and not stored explicitly. 

An alternative to the Gill-Murray factorization which is, nevertheless, similar in 

principle requires the computation of the factorization 

pi   ß*\    f<n    °\_(1   °\(dl    °\(1   M 
\ßz    a2y     VO     p2J      \l2    1 A 0     d2J\0     1 )' 

so that the quantity oi + p2 is minimized. (We use a different notation for the elements 

of the diagonal modification and the diagonal factor because p2 and d2 may be modified 

again at the next stage of the factorization.) Thus if we define the quantity 

r = max {<j>, 6}, 

we need to solve the problem 

min o\ + p2 

subject to      T = a2 + p2 — ßz/i&i + °\) 

o\ > 0,    p2> 0. 
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If <p > 6, ffi = p2 = 0. Otherwise T = 8 and we compute, 

at = \ß2\-äu    and    />2 = 6 - «2 + |/?a|, (3.5.3) 

which are the optimal values of o\ and p2 ignoring the non-negativity constraints.  If 

either correction is negative we use 

<r1 = 0   and    p2 = 6 — a2 + ßl/ät = 6 — <p, (3.5.4) 

or 

a\ =^2/(a2-*)-öi.     and    />2 = °> (3.5.5) 

choosing the sensible pair that minimizes o± + p2. Since (j> < 6, at least (3.5.4) must be 

feasible. 

When this modified Cholesky factorization is used on the matrix (3.5.2), the factors 

are given by 

ll    lAo    JU    lj      ll    1 + 6)' 
which is suitably "close" to the original matrix. 

The first column of the Cholesky factorization is unaffected by subsequent iterations 

and consequently l2 is the required sub-diagonal element of L with 

en = pi +ai. 

The next stage of the reduction involves the matrix 

/Ö2      ß3\ 

where a2 = a2 + p2 and by construction, a2 > 6. This matrix is identical in structure 

to (3.5.1) and so the process can be continued to find the modified factorization of T2, 

T3, ... etc. 

Two advantages of the Gill-Murray modified Cholesky factorization are that (a) 

it is possible to bound the diagonal modification, and (b) it is possible to compute a 

direction of negative curvature when gW = Q and G^ is indefinite (see section 2.2). 

The implementation of the algorithm as described in their work requires accurate a priori 

bounds on the elements of the matrix G^. In our case, the tridiagonal matrix Tq is being 
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factored as it is generated, and the matrix G^ may not be available. It is still possible, 

though, to bound the norm of the modification and to compute directions of negative 

curvature when the gradient is zero. 

Theorem (3.5.6) Let T be a symmetric tridiagonal matrix, with principal i X i 

submatrix T,. Assume that a modified Cholesky factorization 

Ti + Ei = LiDiLj 

is computed using the algorithm described above. If 

7f = maxflayl} 

where {ay} and {ßj} are the diagonal and subdiagonal elements of T, respectively, and 

if 6 is a positive tolerance for zero, then 

\\Ei\\2 < i[S + H + Si]- 

Proof (by induction) Initially, T\ = (c*i). If <*i > 6, then E\ = (0); otherwise, 

E\ = (6 — a\). In either case, \\Ei\\ < £+,|ai| = 1 • [6 + 71 + Si]- (The norm used is the 

2-norm.) 

Assume that \\Ei\\ < i[S + 7,- + Si]-   If ai = Pi+i = 0, then no modification is 

necessary, \\Ei+1\\ = \\Ei\\, and hence ||£l+i|| < (»'+ l)[S + 7,+i + Si+i]- 

Otherwise, r = 6 and we compute CT, and pi+\ from (3.5.3), (3.5.4), or (3.5.5). When 

(3.5.3) is used, 

||£i+i||<||£,-|| + « + 7.-+i + ft+i, 

and the result follows. If (3.5.3) is infeasible, we use either 

Oi + Pi+i = ßi+i/äi - ät+i = ii> 

or 

Oi + Pi+i = ^+i/ä»+i - ät- = 0, 

where ät+i = al+i — 6. There are three cases: 

(i)      max{ä,-,ät+i} < \ßi+i\: In this case, |/3,+i| - ät and |/3,+i| - «»+1 

are both positive, so that (3.5.3) would have been feasible. 
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.   (ii)     |/3,+i|  <  a,:  First, ip <   \ßi+i\ — ä»+i.   Also, because (3.5.4) is 

feasible, we can conclude that ij) > 0. 

(Hi)    |A+i|   <   <*i+i-  First, 0  <   |/3,'+i| — ä^.    Because a,-   >   0 (by 

construction) and äi+i > 0 (by assumption), then 0 = (äi/äi+i)rp > 0. 

We are trying to minimize <7t- + />t+i = min{0, ip}, subject to the feasibility constraints. 

From the case-by-case analysis above, we can conclude that min{0, if)} < max{|/3,+i| — 

öti, \ßi+i\ - äi+i}, and hence 

pt+i||<||^|| + tf + 7.-+i + «i+i. 

This implies that ||i^+i|| < [i+ 1)[6 + 7,+j + ft+i], and the result is proved.| 

In the above discussion, it was assumed that the modifications to the diagonal 

elements of the 2X2 matrices were both positive. When factoring a tridiagonal matrix, 

a diagonal element might be modified twice, and in this case it might be possible to allow 

one of these modifications to be negative. This would not affect the a priori bound on E 

derived above. For this reason, we have not examined this possibility further. 

3.6.     Computing a Direction of Negative Curvature 

The procedure for the computation of the direction of search will break down if 

\\g\\ is zero. If G is positive definite, then a solution has been determined. It remains, 

however, to confirm that G is indeed positive definite. Moreover, if G is indefinite, further 

progress can be made by moving along a direction of negative curvature. 

Suppose that \\g\\ is small. We wish to determine if G is indefinite, and if so, compute 

p such that pTGp < 0. To do this, we choose vi randomly, ||t>i|| = 1, as the initial vector 

for the Lanczos process. The Lanczos iteration 

VJGVj = Ti,        T^LjDjLf 

is performed as long as Tj is positive semi-definite. (Parlett [1980] reports that good 

approximations to the extreme eigenvalues can be obtained in 2n« iterations; if G is 

indefinite, one of the extreme eigenvalues will be negative.) Note that, because we are 

trying to determine if G is indefinite, the tolerance S should be set to zero. 

Assume that Tq, q < 2nä, is the last positive semi-definite matrix that occurs. Also, 
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suppose for the moment that ßq+i is non-zero. Then T,+i = Lq+iDq+iLq+i) where 

where bT
+± = (0,.. .,0,ßq+i). Note that only the last diagonal element of Dq can be 

zero. In order to determine a direction of negative curvature, we perform an orthogonal 

spectral decomposition of l ß q
+i J^x J; 

= i, 
\ß,+ i aq+i) \0   -\q+iJ V921 922/ 

with X9+i > 0. This is possible because Tq+i has exactly one negative eigenvalue. Let 

p = u,+ i, where 

—r - (I 0\ 
Uq+i = («i | • • • | uq+i) = Vq+iLq+1,       Lq+i — Lq+A o      I; 

«9+1 = 9i2«g + Q22vq+i- This is nearly the same as the formula used to compute 

the linear conjugate-gradient search direction, so that no additional vector storage 

is required to implement this idea. Then, if eq+l = (0, ...,0,1) and D,+ i = 

diag{di,..., dq-\, \q, — X,+ i}, 

pTGp = e^+lU^+lGUq+ieq+i 

= eq
r+iL,q+iVq

r
+iGVq+iLq+leq+l 

„ -t   „      w       — T*    — r 
= e^+1Lg+1[Lg+iD,+ iLg+jL9+1e,+i 

= -\,+i < 0. 

Thus p is a direction of negative curvature. It should be noted that, since the Lanczos 

algorithm seeks out the most negative eigenvalue of G, the direction p computed in this 

way ought to be an excellent direction of negative curvature, i.e. prGp/||p|| will be close 

to its minimum value. 

Suppose now that ßq+i = 0. If Tq is positive definite, and provided our initial 

random vector docs not lie wholly in the space spanned by the eigenvectors corresponding 

to positive eigenvalues, then G is positive definite and we are at a local minimum of the 

objective function F. However, if the initial vector does lie in the positive eigenspace, no 

such conclusion can be made. To guarantee the indefiniteness of G, we require a more 

complex procedure. 

We will carry out the Lanczos procedure using a series of initial vectors. The first, 
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v\, will be chosen randomly as above. If the Lanczos algorithm terminates at iteration 

q, with q < n, and Tq is positive definite, then we choose another initial vector v\ 

orthogonal to {v},Gv},...} and run the Lanczos algorithm again. We continue in this 

way until either we encounter an indefinite Tq, or until {v\, Gv\,..., v\, Gv\,...} spans 

Stn. In the latter case, we can assert that G is positive definite. 

This procedure is impractical for large problems. In the worst case, it will take a full 

n steps to determine whether G is indefinite. Suppose that G has one negative eigenvalue. 

Also, let {v\} be an orthogonal set of eigenvectors for G, with v" corresponding to the 

negative eigenvalue. Then the Lanczos algorithm will converge in one iteration for each 

v\, and all n starting vectors will have to be used. When n is large, this is unsuitably 

expensive. 

If G is indefinite then, due to the influence of rounding errors, it is highly unlikely 

that the Lanczos algorithm will terminate without discovering the indefiniteness in G. 

Even if the initial vector vi contains no component in the negative eigenspace, any 

rounding error would almost certainly introduce one. This would then allow a negative 

eigenvalue to develop in Tq as desired. Thus, the worst case behavior described above is 

unlikely to occur in practice. This justifies using a single starting vector when seeking a 

direction of negative curvature. 

If Tq is only positive semi-definite, i.e. dq=0, then it is not possible to determine 

a direction of negative curvature for the quadratic approximation. If we set p = uq, 

the q-th linear conjugate-gradient search direction, then pTGp = 0 using an argument 

similar to that above. Such a p may be a direction of negative curvature for F, even 

though it is not for the quadratic subproblem. This would depend on the higher-order 

derivatives of F. 

3.7.     Minimum Residual Methods 

As was seen above, the preconditioned Lanczos method generates a tridiagonal 

matrix as a projection of the coefficient matrix in (3.3.1). In the previous sections, we 

used this tridiagonal matrix to minimize a quadratic function related to our original 

system of equations. This tridiagonal matrix can also be used to implicitly solve the 

normal equations 

GTGP = GTb. 
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This idea is the basis of the minimum residual algorithm MINRES of Paige and Saunders 

{1975]. 

When minimizing the quadratic function, we formed an LDLT factorization of the 

tridiagonal matrix T. In this context, it is more appropriate to factor Tq (or, to be more 

exact, Tq + Eq) as 

Tq = LqQq,        QT
qQq=I, (3.7.1) 

with Xq lower triangular. The bar is used to indicate that Lq differs from the q X q 

leading part of L,+i in the {q, q) element only. The details of this factorization can be 

found in the Paige and Saunders paper. 

If we carry out the orthogonal factorization, we obtain that 

VT
qG

2Vq = Tq + ß2
q+1eqeT= LqL

T
q + ß\+xeqeT

q = LqL
T

q, (3.7.2) 

where Lq is the leading q by q part of L,+i. If we project the normal equations onto the 

space spanned by the columns of the matrix Vq, we obtain 

VT
qG

2Vqzq = V^Gb,       p, = Vqzq. 

The right-hand side of this system can be written as 

Using (3.7.1) and (3.7.2), we obtain the following system of equations for zq: 

LqL
T

qzq = ß{LqQqei. (3.7.3) 

But we can write 

Z, = LqDq,        Dq = diag(l, 1,..., cq), 

and while Lq is nonsingular, (3.7.3) gives 

Lqzq = ß!DqQqei == (n,..., T,)
T
= tq, 

T\=ß\Cl, T, = /?iSi«2-"«t-lCt, * = 2,...,9, 
(3.7.4) 

so there is minimal error in computing Lquq.   Clearly zq cannot be found until the 

algorithm is completed, but it is not really needed; instead we form 

Nq = [m,...,n,] = VqLq 
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column by column, and then 

*? = V, = VqL-TL*z, = Nqtq, 

where tq is developed in (3.7.2), and the superscript R shows that this is the vector which 

gives the minimum residual. It can be seen that this formula does not require the storage 

of the matrix N; all that is needed is its final column. 

Because we will wish to terminate this algorithm based on the norm of the residual, 

it is important that this quantity can be computed with little effort and without requiring 

excess storage. It follows from the results of Paige and Saunders that 

||rf|k = |/3i8is2---8,|, 

which satisfies our requirements, and which shows clearly how the residual norm decreases 

each step. Here, \\-\\M refers to the M-norm of a vector^ where M is the preconditioning 

matrix for the Lanczos algorithm (see section 3.8 below). 

3.8.     Preconditioning the Lanczos Algorithm 

When exact arithmetic is used throughout, the number of iterations required to solve 

a linear system Gp — b using the conjugate-gradient method or the MINRES algorithm 

is equal to the number of distinct eigenvalues of G (see, for example, Luenberger [1973], 

pp. 176-178). Therefore, the performance should be significantly improved when the 

original system is replaced by an equivalent system in which the matrix has many unit 

eigenvalues. The purpose of preconditioning is to construct a transformation to have this 

effect. 

Let M be a symmetric, positive-definite matrix. The solution of Gp = b can be 

found by solving the system 

M-*GM~*y = M~H, 

and forming p = M~*y. Let R denote the matrix M~%GM~*; we have M~?RM$ = 

M-1G and therefore R is similar to M~lG and has the same eigenvalues. The idea is 

to choose M so that as many of the eigenvalues of M~lG as possible are close to unity. 

This is roughly equivalent to choosing M so that the condition number of M~XG is as 

small as possible; the matrix M is known as the preconditioning matrix. 
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Given a preconditioning matrix M, we can apply the Lanczos algorithm to the 

transformed system without forming R and without the need to find the square root 

of the matrix M. In practice, M will often not be explicitly available. It will only 

be available as an operator, and all that will be possible is to solve systems of linear 

equations with coefficient matrix M. 

The recurrence relations analogous to (3.3.3) for the transformed system are 

ßj+ivj+i = M~iGvi-ajVj--ßjVi-i,        a3 = vJGvj, 

where t>o and v\ are chosen as before. Notice, however, that for the preconditioned 

algorithm the vectors Vi are normalized so that ||vt||Af = 1- After the g-th step we have 

GVq = MVqTq + ßq+lMvq+le
T

q. 

Note that the matrices M, Tq, and V, satisfy the relations 

VjMVq = Iq)        and       V*GVq = Tq. 

This preconditioned Lanczos algorithm allows us to solve the system of equations (3.3.1) 

in the same way as in sections 3.3 or 3.7: The crucial fact in the derivation in those 

sections is that the matrix Vq transforms the matrix G to tridiagonal form. This is still 

true for the preconditioned algorithm. 

We shall discuss the choice of preconditioning matrix in chapter 5. We shall be 

particularly interested in using a matrix M that is an approximation to the inverse of G. 

This matrix can be obtained using information from a nonlinear conjugate-gradient-type 

method together with information from previous linear subiterations. 
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4     Terminating the Linear Algorithm 

4.1. Introduction 

In order to fully define the simplest form of a truncated-Newton algorithm, all that 

remains is to state how to terminate the linear algorithm. The fundamental results in 

this area were proved by Dembo, Eisenstadt and Steihaug [1980]. They provide very 

useful guidelines for developing practical convergence criteria. 

In section 4.2, the results of Dembo et al. will be described from the point of 

view of function minimization (they were originally stated in the context of solving 

systems of non-linear equations)'. Because these results are stated in terms of the 2-norm 

of the residual in (2.2.3), they are not directly applicable or even natural when used 

in conjunction with methods based on minimizing a quadratic function. More useful 

extensions of their results will be proved in section 4.3. In section 4.4, practical stopping 

criteria for the linear algorithm will be discussed. Finally, in section 4.5, truncated- 

Newton algorithms based on a trust-region approach will be derived. 

4.2. Termination Based on ||r^||2 

Actually, the results in this section involve the relative residual 

rW/\\gW\\, (4.2.1) 

where 

r<*> = G<*V*} + ffW 

The relative residual in (4.2.1) is used because it is scale free, i.e. multiplying the objective 

function F by a constant does not affect its value. Note that since \\g^\\ -♦ 0 and 

l|p(fc)|| -»• 0, then ||pW - (-gw)|| -*■ 0. Since -gW would be an exceedingly poor 

approximation to pW to use within the algorithm, clearly it is necessary to scale in the 

manner described. 

.   All the results of this section will be of the following form: the linear iteration will 

be truncated if the current estimate pW of the search direction guarantees that 

||r(*)|| 
jj^|<«k, .      fc = 0,l,...l (4.2.2) 
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where {<£*} is some "forcing sequence". The algorithm is then completely defined given 

that the sequence {<f>k} has been specified. 

Before proceeding with the main result, we require the following definition. 

Definition (4.2.3)      G(x) is Holder continuous at x* if there exist constants p € (0,1] 

and L so that for all y in a neighborhood of x 

\\G(y)-G{x*)\\<L\\y-x*\\". 

We are now in a position to state 

Theorem (4.2.4)      Assume that F : SRn -»■ Jft is a real-valued function such that 

1) There exists a local minimum x* of F. 

2) F is twice continuously differentiable in a neighborhood of x 

3) G{x ) is nonsingular (and hence positive definite) 

and that the truncated-Newton sequence {x^} converges to x . Then 

i) if limk-,.oo0fc = 0, the convergence rate of {r^} and {x^} will be 

superlinear. 

In addition, if G(x) is Holder continuous at x   with exponent p 6 (0,1], then for some 

c > 0, 

ii) if 4>k < clls^llp> the sequence {x^} converges with Q-order (1 + p); 

and 

iii) if {<f>k} converges to 0 with R-order (1 + p), then {x^} converges to 

x* with R-order (1 + p).| 

The proofs of these results can be found in Dembo et al. [1980]. 

4.3.     Alternative Assessment Criteria 

In order to approximately solve the system of linear equations (2.2.3), some variant of 

the conjugate-gradient algorithm is used. Although Theorem (4.2.4) is useful in indicating 

when to stop the conjugate-gradient iteration, it is based on ||rg|| a quantity which does 

not decrease monotonically as the algorithm progresses (the subscript q refers to the 

linear conjugate-gradient iteration). The algorithm is based upon the minimization of 

the quadratic function 

Q{p) = \P
TGp + pTg. 
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It would be preferable to stop the algorithm based on the value of this quadratic function, 

since it is a closer measure of how the conjugate-gradient algorithm is converging. Ideally, 

we would like to measure convergence in terms of the quantity 

lIP-PlI 
IMI  ' 

where p is the minimizing point for the quadratic function Q{p). Since this is unavailable 

during the computation, this is not possible. However, a simple substitution shows that 

HP-PIIC 

1Mb- 
Q(p)-Q(p) 

Q(p) 

In this section we will show how to use this relation to derive a practical convergence 

criterion. First of all, two lemmas arc required. 

Lemma (4.3.1)      If G is symmetric and positive-definite then 

yTG2y < \\G\\yTGy. 

Proof     We can assume, without loss of generality, that G = diag{X»}. Then, 

yTG*y = Y,vW 
S:   / j Vj "i^max 

— Amax / ^ J/t- \i 

= \\G\\yTGy.M 

Lemma (4.3.2)      If G is symmetric and positive-definite then 

yTGy < HG-^ly'G'y.l 

The proof of this lemma is almost identical to the previous proof and is therefore omitted. 

We now move on to our main result. 

Theorem (4.3.3)      Suppose Q(p) = %PTGp + pTg, where G is symmetric and positive- 

definite. Let p denote the point that minimizes Q. Then, for any p, 

'  \\Gp + g\\*<2\\G\\-(Q(p)-Q{p)) 

[Q(p)-Q(p))<i\\G-1\\'\\Gp + gf. 

Proof     We will prove here the first result, which relies only on Lemma (4.3.1) above. 
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The proof of the second result (which relies on Lemma (4.3.2)) is almost identical. 

\\Gp + g\\2 = {Gp + g)T(Gp + g) 

= (Gp-Gp)T(Gp-Gp) 

= {p-p)G2{p-p) 

<\\G\\(pTGp-2pTGp + pTGp) 

= \\G\\({pTGp+2pTg)-pTg) 

= 2\\G\\(Q(P)-Q(p)).i 

The significance of this result is that we can now rewrite Theorem (4.2.4) with ||r,|| 

replaced by [Q{pq) — Q(p))1^2- One major advantage of using this quantity is that it 

decreases monotonically during the linear conjugate-gradient iteration. 

Clearly, since p is unknown during an iteration, we cannot make direct use of this 

quantity within an algorithm. We require a convergence test which only involves com- 

putable quantities, and at the same time maintains a superlinear convergence rate in the 

outer algorithm. To this end, we will now examine the behavior of the linear conjugate- 

gradient algorithm more closely. Because the performance of the outer algorithm is now 

of interest, the superscript ^ is now included in the formulas. 

Hestenes [1980] has shown (p. 44) that 

Q{k)(Pq+i) - Q{k\p) < K QW(p,) - QW(p) 

where K = (ff+™)2 and m, M are the extreme eigenvalues of G^. Hence, 

^(Q(fc)(p,+i) - Qw®) < Qw(Pq) - Qw(Pq+i) 

.   <Q{k)(pq)-Q
w(p)- 

From this we conclude that it is possible to achieve superlinear convergence by insuring 

that 

QW(pq)-Q
W(pq+x)\   =o(||gW||). (4.3.4) 

The significance of this result is that all the quantities involved can be computed during 

the course of the linear conjugate-gradient iteration. Thus, this is a practical way of 

being able to guarantee superlinear convergence. It is also attractive because it is based 

on the successive values of the quadratic function minimized by the linear CG algorithm, 

and not on successive values of the residual. Unfortunately, like the norm of the residual, 

it does not decrease monotonically during the iteration. 
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When using the linear conjugate-gradient algorithm to solve Gp = —g, we clearly 

have that ||p0|| = ||-ff|| and that ||Poo|| = H-G^gH < ||Gf—*|| • \\g\\. This implies that 

we can rescale (4.3.4) and obtain the following two equivalent convergence tests: 

lQW(pg) - Q(*Wi)]* = o(|Q(fc)(pi)|±) (4-3.5) 

and 

\Q{k)(p,)-QW(p,+i)]>=o(\QW(pq+l)\$). (4.3.6) 

These measure the current reduction in the quadratic function against its initial value 

and its latest value, respectively. 

There is one further extension of the convergence results which is of interest when 

truncated-Newton methods are used in conjunction with the linear algorithm MINRES. 

This concerns the use of norms which vary from iteration to iteration. 

When MINRES is used with preconditioning (see Chapter 5 for details) the progress 

of the linear iteration is assessed using 

II^IIMO)' (     ] 

where ||-||M is defined by 

HvIlL = VTMy 

and {M( '} is a sequence of positive-definite matrices. From the way in which the 

MINRES algorithm is derived, it is clear that (4.3.7) has the desired monotonicity 

property which the original convergence criterion and (4.3.4) lack. 

We shall assume that there exists a uniform finite upper bound on the eigenvalues 

of {M(fc)}. That is, there exists Xmax such that 

X(M<*>) < Xm„ < oo,        VA, (4.3.8) 

where \[M^k\) is any eigenvalue of the matrix M^kK From the way in which the sequence 

{M^} is constructed, it will follow that there is a uniform positive lower bound as well. 

Thus, there exists Xm;n such that 

0 < Xmin < X(AfW). (4.3.9) 

Using (4.3.8) and (4.3.9) it is clear that 

xiiJMI < \\y\\M(») < xJLlMI,       VA 
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and hence that 

A^yilrWH       ||rW||MW       Amaxyi|rW|| 

From this it follows that the ratio (4.3.7) can be used to terminate the linear iteration. 

4.4.     Practical Forcing Sequences 

The forcing sequence in the convergence test can be chosen in accordance with 

Theorem (4.2.4). This theorem shows how to obtain linear, superlinear, or quadratic 

convergence by appropriately defining <j>k- 

If we select 0<^jt = c<lorO<c<^jt<d<l, then the rate of convergence 

will be linear. If (j>k > 1, then p^ = 0 is a valid search direction and no step is made; 

hence we must choose <j>k < 1. The reason for choosing <j>k < 1 is to insure that at least 

one linear iteration will be performed and that a direction other than the steepest-descent 

direction will be selected if possible. When a preconditioning strategy is employed (see 

Chapter 5), this condition could be relaxed. 

For superlinear convergence, we must have that <f>k —*■ 0 as k —► oo. Dembo et al. 

[1980] have suggested using 

<f>k = 1/*. (4.4.1) 

This sequence converges to zero quite slowly, so that the convergence test for the linear 

iteration is not overly stringent. 

Quadratic convergence can be attained if 

<t>k < \\g{k)\\. (4.4.2) 

Away from the solution, ||flr^fc)|| will often be greater than one, so that setting <f>k = \\g^\\ 

may not lead to convergence. This suggests combining (4.4.1) and (4.4.2) to obtain 

^ = minjl/fc,||<7<fc>||j (4.4.3) 

as a forcing sequence.    Hereafter, we will refer to (4.4.3) as the "standard" forcing 

sequence. 

It may be desirable or necessary to limit the number of linear iterations allowed 

during each outer iteration.   Because the linear inner algorithm converges at a linear 
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rate, i.e. 

Qq+i-Q* <K[Qq-Q*], 

then setting an upper bound of L linear iterations leads to a linear rate of convergence 

for the total algorithm. 

Numerical tests of various forcing sequences are conducted in Chapter 7. 

4.5.     Trust-Region Methods 

The quadratic approximation (2.2.2) to the objective function is clearly not valid for 

all values of p. Up until this point, a line search algorithm has been used to monitor the 

effectiveness of the approximation and to correct for its deficiencies. Another approach 

to this problem is to use trust-region methods. 

Trust-region methods, like line-search methods, are concerned with minimizing the 

quadratic approximation (2.2.2). But unlike line search methods, a constraint is added 

to the subproblem which involves an estimate of the size of the region where (2.2.2) 

adequately predicts the decrease in value of the objective function F. In exact terms, 

then, we seek to solve 

min Q{k\p) = min F(fc) + g{k)Tp + ±pTGwp (4.5.1) 
p p 

subject to 

IHI<*(fc). (4-5.2) 

In order to obtain a solution to this problem, the constraint is usually rewritten as 

iPTP ^ i(^*^)2- This transforms (4.5.1) and (4.5.2) into a convex programming problem. 

The global solution is obtained by finding p and X such that 

gW + Gwp+\p = 0 

\prp - tf W < 0 

x(iP
rP-i^)) = o (4'M)- 

X > 0. 

The problem (4.5.3) is usually solved by computing some estimate of the Lagrange 

multiplier X and solving the system of equations 

(GW + X/)pW = -ff«. (4.5.4) 
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A check is then made to insure that the constraint (4.5.2) is satisfied. If not, a new X is 

computed and (4.5.4) is employed once again. 

The final step in a trust region iteration involves computing x'fc+1' and 6^k+1\ This 

step is usually based on the value of p^k\ the ratio between the actual function decrease 

and the predicted decrease: 

(fc)=   F(*>-F(s(*> + P(*>) 
p F(k) _ QW(x(fc) + pW) • 1i"t'°' 

Generally, the larger the value of p^k\ the more adequately the constrained subproblem 

(4.5.1), (4.5.2) indicates a decrease in the objective function. Thus, if pW \s large, a 

step is made to the new point x(fc+1) = x^ + p(kh If />(fc) is especially large, the trust 

region parameter 6^ will be increased, indicating greater confidence in the quadratic 

approximation. On the other hand, if pW is small, no step will be made (i.e. x(fc+1) = 

x(fc)) and 6^ will be decreased. 

The above is intended as a general outline of trust region methods. More detailed 

information as well as exact computational formulas can be found, for example, in Vardi 

[1980] or Hebden [1973]. 

When the Newton equations (2.2.3) are being solved iteratively, repeated solution 

of (4.5.4) is impractical. Steihaug [1980] has shown that use of (4.5.4) can be avoided 

if the constraint (4.5.2) is used to terminate the linear conjugate-gradient algorithm. 

Steihaug's work was done in the context of truncated quasi-Newton methods (similar 

to truncated-Newton methods, except that an approximate solution is obtained for the 

quasi-Newton equations (2.3.3) rather than the Newton equations (2.2.3)), but his ideas 

are immediately applicable here. 

At each iteration of the linear conjugate-gradient algorithm, Steihaug suggests 

monitoring the length of ||p,||. This leads to the following formulas and tests: 

1-  Pq+1 = Pq + <*,«, 

2. If ||p,+i|| < 6^ then continue with the algorithm. 

3. Otherwise compute T > 0 such that ||p, + T«,|| = S^k\ set pW = 

pq + TU,, and terminate. 

Steihaug has managed to show that the resulting algorithm is globally convergent, and 

is able to prove theorems comparable to (4.2.4) on the actual rates of convergence for 

various forcing sequences. 
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Little computational experience has been reported for truncated-Newton algorithms 

based on trust-region strategies. Although they show obvious promise, they lie outside 

the scope of this thesis, and will not be considered further. Much of the work used in 

designing linesearch-type algorithms is directly applicable to the trust region approach. 
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5     Preconditioning 

5.1.     Introduction 

For every numerical algorithm there is an ideal problem. For Newton's method, 

the ideal problem is a quadratic function. For the quasi-Newton and conjugate-gradient 

methods, the ideal problem is a quadratic function with Hessian matrix equal to the 

identity. More generally, we often think of the class of problems which the algorithm 

solves well. For Newton's method, this is the set of functions which are "nearly" 

quadratic. For quasi-Newton and conjugate-gradient methods, it is the set of functions 

whose Hessians have clustered eigenvalues. 

Because most problems are not ideal for an algorithm, it is important to have 

alternative techniques of modifying the initial problem (without altering its solution) 

so that it is easier to solve. The general idea is to make the given problem "closer" to 

the ideal problem. This type of technique is called preconditioning. 

Preconditioning is such a powerful and general idea that there exist preconditioned 

versions of almost every known numerical algorithm, both direct and iterative. Direct 

algorithms often use preconditioning to reduce the error in the computed solution. One 

common example of this is the use of column scaling in Gaussian elimination (see, for 

example, Wilkinson [1965], chapter IV). Iterative methods generally use preconditioning 

to speed up the rate of convergence (although they may also be concerned with the 

condition of the problem). One of the best-known and best-understood examples of this is 

the generalized (i.e. preconditioned) linear conjugate-gradient algorithm (Concus, Golub, 

and O'Leary [1976]). A brief description of preconditioning for the linear-conjugate 

gradient algorithm can be found in section 3.8. 

To give some idea of the versatility of this concept, it is possible to consider Newton, 

quasi-Newton, and conjugate-gradient algorithms as preconditioned steepest-descent al- 

gorithms, with the preconditioning being generated as the algorithm proceeds and being 

modified at each iteration. 

In large problems where it is expensive to compute information, it is important to 

make as much use as possible of every computed quantity. This generally takes the form 

of using current information to precondition future iterations. 

With truncated-Newton methods, there are two algorithms to be concerned with. 
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First of all, there is the outer nonlinear iteration. In the basic method, this is just the 

steepest-descent method. This could be replaced by a conjugate-gradient or a limited- 

memory quasi-Newton method (using Newton's method would defeat the whole purpose). 

This idea will be discussed in Section 5.2. During the linear algorithm, matrix-vector 

products involving the current Hessian matrix are computed. It would be desirable to 

use these to precondition future non-linear and linear iterations. This is the subject of 

Sections 3 through 6. 

We believe that the range of problems for which a truncated-Newton method will 

be successful will be extended considerably only when a good direction can be produced 

in a small number of linear conjugate-gradient iterations, and to this end the use of 

preconditioning is essential. 

5.2.     Preconditioning with a Non-Linear Algorithm 

When using a preconditioned modified Lanczos algorithm to approximately solve the 

Newton equations (2.2.3), at each iteration it is necessary to solve a system of equations 

Mz = r 

involving the preconditioning matrix M. Most non-linear optimization algorithms can 

be viewed as computing a search direction by solving, possibly implicitly, a system of 

linear equations 

Bp = -9, 

for some matrix B. Thus, by applying the formulas for the non-linear method to the 

vector r, it is possible to implicitly define a matrix M which can then be used as a 

preconditioning matrix in the linear algorithm. 

Setting M = I, i.e. using an unpreconditioned algorithm, corresponds to the 

steepest-descent method. Another possible preconditioning matrix for this system is 

an r-step limited-memory quasi-Newton matrix //. As we approach the solution, and F 

looks more and more like a quadratic function, a small number of quasi-Newton steps can 

often produce a search direction which is much superior to the steepest-descent direction 

or to a traditional non-linear conjugate-gradient direction (see Gill and Murray [1979]). 

Using a quasi-Newton preconditioning, the vector —HgW will be the first non-trivial 

member of the sequence {p,} and this direction is far more likely to give a good reduction 
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in the function than -g(kh Consequently, even if the linear conjugate-gradient algorithm 

were terminated immediately, a reasonable search direction would have been obtained. 

5.3.     Diagonal Preconditioning of the Nonlinear Algorithm 

Nonlinear minimization algorithms have been found to work more efficiently if the 

variables are properly scaled. This means that all of the variables are correctly weighted, 

i.e. that a unit step along the search direction will approximate the minimum of the 

function in that direction. It also implies that the tolerances for the algorithm have the 

correct scaling (a factor even for the more scale-invariant algorithms such as Newton's 

method). One way of achieving this is through a diagonal preconditioning. 

If the direction of search is obtained from the quasi-Newton equation (2.3.2) (which 

is the case when a limited-memory quasi-Newton algorithm is used as a preconditioning 

strategy), the BFGS formula (2.3.9) may be simplified so that the matrix #(*> does not 

appear in the rank-two correction: 

B(k+i) = B(k) + 1 gWgWT
+ 1 yWyWT. 

gWTpW a(k)yWTpW 

This result implies that even if the off-diagonal elements of ßW are unknown, the 

exact diagonal elements can still be recurred. These diagonal elements may be used to 

precondition the conjugate-gradient method. Let 7y and V>y denote the jth elements of 

0<*> and yW respectively. If Afc+1 = d\ag(6lf... ,6n) and Ak = diag(«lt...,tfn) denote 

the approximate diagonal Hessians during the (k + l)th and fcth iterations respectively, 

then 
J_ 

gWT
p(k) - a(k)y(k)Tp(k) 

This diagonal preconditioning step involves an approximation to the diagonal pf G 

based on ffW, pW, and y(*>. In the linear iteration of a truncated-Newton method, 

though, matrix/vector products involving G are computed. It would be desirable to use 

this more exact second-derivative information to compute A, the diagonal precondition- 

ing matrix. 

Several methods of computing A have been developed and tested. The first two are 

rank-one and rank-two Quasi-Newton updates which are based on the (false) assumption 

that G is a diagonal matrix. A third is a BFGS update to the diagonal of the approximate 
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Hessian. In addition, it is possible to use exact information about the diagonal of the Hes- 

sian either to precondition the linear algorithm or to initialize the linear preconditioning. 

Note, however, that even if matrix-vector products of the form Gv can be found, it may 

be inconvenient to compute Ga. 

At each linear iteration, a computation of the form 

y = Gs 

is performed. If the symmetric rank-one Quasi-Newton update is rewritten with B 

replaced by the diagonal matrix A, we obtain 

A       - A  j. (2/ - A,-«)(y ~ Ai«)r 

[y - Ais)Ts 

Any off-diagonal terms in the rank-one term are ignored. Notice that no matrix need be 

stored in order to implement this update. 

A similar adaptation can be performed for the BFGS formula. This time the result 

is 

Al+i = At- - -J—{Ais){Ais)T + -jryyT. 

Again, off-diagonal terms in the rank-one terms are ignored, and no matrix storage is 

required. 

There is a further way in which a diagonal quasi-Newton update can be used to 

approximate to the diagonal of G. Because the linear conjugate-gradient algorithm is 

equivalent to the BFGS algorithm (when applied to the same quadratic with Bo = I), it 

is possible to show that Bn = G. Thus, if we were able to update only the diagonals of 

B, at the end of n steps we would have the exact values for the diagonal elements of G. 

Unlike the two diagonal updates above, this will be an exact rather than an approximate 

quasi-Newton update. 

To develop this update, we will ignore the nonlinear algorithm for the moment, and 

concentrate our attention on one instance of the linear conjugate-gradient method. We 

are attempting to minimize the quadratic function 

<KP) = hPTGP + PTc, 

and hence 

g{p) = </>'{p) = Gp + c = -r(p), 
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where r(p) is the residual at p. The linear conjugate-gradient algorithm is initialized with 

Po = 0> and at the q     iteration the next estimate of the solution is computed as 

Pq+l = Pq + <XqUq, 

where uq is the search direction and aq is the step-length. 

The BFGS algorithm computes the (same) search direction using the formula 

Bquq = -gq, (5.3.1) 

where gq = g[pq). If an exact line-search is used, the step-length for the BFGS algorithm 

is the same as that for the linear conjugate-gradient algorithm. Under the assumptions 

that po = 0, BQ = I, and that the new approximate Hessian Bq+\ is computed using 

Bq+l = Bq- -fl—(Bqsq)(Bqsqf+ -^-yqy
T

q, (5.3.2) 
sqDqsq VqSq 

both algorithms compute the same estimates of the solution at every stage. 

It is possible to adapt (5.3.2) so that only the diagonals of the update need be 

computed. Using (5.3.1) and 

89 — Vq+l ~Pq = <XqUq, 

we can conclude that 

Bqsq = —aqgq. (5.3.3) 

The other important fact is 

Vq = 9q+i -9q = otqGuq. (5.3.4) 

If we incorporate (5.3.3) and (5.3.4) in (5.3.2), we obtain 

Bq+l =Bq- ^rfrJ+ _i_(G«,)(Gt.f)r. (5.3.5) 

Using (5.3.5), any individual element of Bq can be individually updated. 

■ When the linear conjugate-gradient algorithm is used directly, (5.3.5) is quite ade- 

quate. Unfortunately, problems arise when a linearly preconditioned modified-Lanczos 

algorithm is used instead. First there is the problem of linear preconditioning. The 

correspondence between the BFGS and the linear conjugate-gradient methods assumes 
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that no linear preconditioning is used. This is a very easy problem to surmount, since 

the linear conjugate-gradient algorithm preconditioned by the matrix M is equivalent to 

the BFGS algorithm initialized with B0 = M. To see this, replace G by M~»GM~i in 

the above derivation. 

The other problem concerns scaling. When the linear conjugate-gradient algorithm 

is implicitly implemented using the Lanczos algorithm, the vectors corresponding to the 

search direction and the residual are not properly scaled. This scaling does not affect 

the final term in (5.3.5), since the scaling enters equally into the numerator and the 

denominator. The other rank-one matrix is affected, however. In our implementation 

of the algorithm, the correctly scaled residual is available. This leaves only the inner 

product ujrq. Using the recurrence relation for the search direction uq, and the fact that 

the residuals are M-orthogonal, it can be shown that 

T T u
q
Ti = V«' 

where 

M^zq = r,. 

Since our algorithm computes equally-scaled multiples of zq and rq as well as the correctly 

scaled rq, it is possible to correctly compute the inner product. 

Because the Hessian matrix is not always positive-definite, the modified-Lanczos al- 

gorithm alters the subproblern it is solving when it runs across evidence of indefiniteness. 

The preconditioning scheme is trying to approximate the diagonals of the actual Hessian 

matrix, and two of the preconditioning algorithms described above have the property of 

hereditary positive-definiteness, so there is some question as to what should be done when 

the Hessian matrix is modified. We have chosen to omit the diagonal update whenever 

the matrix goes indefinite. Since our implementation of the modified-Lanczos algorithm 

only performs one iteration with the modified matrix before returning to the nonlinear 

algorithm, very little second-derivative information is wasted using this approach. 

There is some theoretical evidence to indicate that, among diagonal preconditionings, 

this final preconditioning strategy is the most effective. Forsythe and Straus [1955] have 

shown that if the Hessian matrix G has property A, then the diagonal of G is the optimal 

diagonal preconditioning. This assumption is valid for many problems arising in partial 

differential equations.   Also, in the general case, van der Sluis [1969] has proven that 
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preconditioning with the diagonal of G will be nearly optimal, in the sense that the 

condition number of G preconditioned by its diagonal will be at most n times as large 

as the condition number of the optimally diagonally preconditioned G. Thus, estimating 

the diagonal of G using the BFGS formula (1.5) should be effective for all problems. 

Using (5.3.5) it is possible to compute any number of subdiagonals in addition to the 

main diagonal. Because this extension is so straightforward, the details will be omitted 

here. 

5.4.     Diagonal Preconditioning with MINRES 

In sections 5.2 and 5.3, several methods for diagonally preconditioning a truncated- 

Newton algorithm were described. The first three (the non-linear preconditioning and 

the rank-one and rank-two diagonal updates) can immediately be applied to MINRES 

since they do not rely on any special properties of the underlying linear algorithm. 

However, a fourth preconditioning (a BFGS update to the diagonal of the approximate 

Hessian) is dependent on the correspondence between the BFGS quasi-Newton algorithm 

with exact line searches and the linear conjugate-gradient algorithm. In order to adapt 

this preconditioning strategy to MINRES, we must analyze the correspondences between 

MINRES and the linear conjugate-gradient method. 

The search directions in MINRES are different to those generated in the linear 

conjugate-gradient method. Consequently, at first sight we cannot implement the fourth 

preconditioning technique which relied on the relationship between the search directions 

for the BFGS algorithm applied to a quadratic function and those for the linear conjugate- 

gradient algorithm. What we shall show, however, is that from information available in 

the MINRES algorithm, we can easily generate both the required search directions and 

the required vectors to update the Hessian approximation. 

To this end, we define 

Wq = [w1,...,wq-1,wq] = VqQ*, 

and 

Wq = [t»i,...,ti;,]. 

If the Lanczos process stops with ßm+i = 0, it is then easily verified that 

GNm = VmTmL-T = VrnQl=Wm. (5.4.1) 
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It is now straightforward to establish the desired correspondences. Using results from 

Paige and Saunders [1975], we obtain 

Pq° " P? = rq[aqlcq)
2nq = 7,n, (5.4.2) 

and 
rq    —rq- iqwq 

= 0i»l »2- • -8,(8,«/, - vq+i))/cq - 7,w, (5.4.3) 

= {-ßiHS2-'-sqvq+l)/cq = 6q+lvq+i. 

Recall that we are trying to compute 

*." = *. - ^ vf+ ip^j(G«f KG«,)', 

where the vectors uq and r, refer to the search-direction and the residual from the 

linear conjugate-gradient algorithm. Formula (5.4.3) indicates how to compute r, for 

this update. Since 

Pq+1 = Pq + OtqUq 

and 

Pf+i =P? + rqnq, 

we can subtract these two equations from each other and use (5.4.2) to obtain 

<*qUq = ilq+l + VnK+1 ~ 7«««- (5.4.4) 

Multiplying (5.4.4) by G and using (5.4.1) we obtain 

aqGuq = (7,+1 + Tq+i)wq+i - 7,ro,. (5.4.5) 

Consequently, the vector Guq need not be calculated directly. This is of particular 

significance in the non-linear algorithm when G may be unknown. Thus, we are able to 

compute a scaled version of the conjugate-gradient search direction. Since the final term 

in the BFGS update is scale-invariant, we can use (5.4.4) and (5.4.5) in order to compute 

it. This is not true of the first term, but a, can be computed using 

{aquq)T{aqGuq) {<*quq)T{aqGuq) {aquq)T{aqGuq)' 
a,    = 

where M is the preconditioning matrix for the Lanczos algorithm. Combining all of these 
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results, we obtain the desired formula for the BFGS update: 

5.5.     Tridiagonal Preconditiong 

The linear conjugate-gradient algorithm transforms the Hessian matrix G according 

to the formula 

GRq = VqTq + ßq+lvg+1e* 

Thus 

RqGRq — Tq. 

This suggests the use of the preconditioning matrix 

VqTqV
T

q = Mq. 

The matrix Mq is rank deficient and consequently cannot be used directly as a precon- 

ditioning matrix. By extending the definitions of Vq and Tq, we can construct a precon- 

ditioning matrix utilizing the information in Mq. 

In order to extend Vq, we form its QR factorization (using, for example, Householder 

transformation (see Wilkinson [1965], pp. 290-299)): 

Vq = QR, 

where Q is an n X n orthogonal matrix; R is of the form 

and Ri is a k X k upper-triangular matrix. If we partition Q conformally to R: 

Q = (Qi\ Q2), 

the columns of Q\ span the same space the columns of V,, and the columns of Qi span its 

orthogonal complement. To complete the extension of V, to the whole space, we define 

V, 
-<*;> 
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To extend Tq, we exploit the convergence theory for the Lanczos algorithm. Parlett 

[1980] has shown that the eigenvalues of Tq tend toward the extreme eigenvalues of G. 

It is natural, then, to define 

where 

ci = xmin(r,) < 7 < Xmax(r,) = en. 

Some possible choices for 7 are 

7 = *(ei + en) 

and 

7 = («i -en)*. 

The full preconditioning is then 

M, = QRTqR
TQT. 

A similar tridiagonal preconditioning can be produced by using the approximation 

G pa R~TfqR~\ 

where Rq refers to the extension of Rq to the whole space (as in the definition of V,). 

5.6.     Approximating the Product of the Tridiagonal Preconditionings 

Although at the first iteration the tridiagonal matrix from the Lanczos algorithm 

has eigenvalues which approximate the extreme eigenvalues of G, at subsequent iterations 

the Lanczos algorithm is being applied to a preconditioned version of G whose extreme 

eigenvalues may bear little relation to those of G itself—in fact, this is the intent of the 

preconditioning strategy. One attempt to surmount this problem involves computing 

the product of the previous preconditioning matrices Mi, and using this product as the 

preconditioning at the next iteration. Because of storage limitations, this product cannot 

be computed exactly, and an approximation to it must be used. That approximation is 

the topic of this section. 

Suppose we have already computed 

Jfc-i 

Mfc-i» n fa 
»=1 
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in the factored form 

Also assume that the current preconditioning matrix Mk is available in the form 

Here, L* is lower-bidiagonal and Lk-i is lower triangular. Then, by applying Ml on the 

left and right to Mk-i, we obtain an approximation to M*: 

If we treat the central factors in this product as block 2X2 matrices, compute their 

product, and ignore off-diagonal terms, we obtain 

where L* is lower triangular and 7fc = 7*7fc_1. Lk is obtained by doing a Cholesky 

factorization of the first matrix in the sum above. This is the desired approximation to 

the product of the preconditioning matrices. 
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6     Extensions to Other Problems 

6.1. Introduction 

So far, we have been concerned with the solution of unconstrained minimization 

problems where few assumptions have been made about the form of the objective func- 

tion F. It is very common to encounter problems where auxiliary conditions, called 

constraints, are placed on the independent variables x. Another common problem is the 

minimization of functions which can be represented as the sum of the squares of other 

functions. Such problems are often referred to as least-squares problems. 

In this chapter, we show how truncated-Newton methods can be adapted to solve 

problems of both these types. In sections 6.2-6.4 we discuss constrained problems, and 

in section 6.5 a treatment of least-squares problems is given. Since successful methods 

already exist for dense problems of these types, we are especially concerned with large 

sparse problems. In particular, currently it is difficult to solve constrained problems 

where the number of variables n, the number of constraints t, and their difference n — t 

are all large. Truncated-Newton methods provide some hope in this case. 

6.2. Constrained Minimization Problems 

The most general constrained optimization problem can be expressed in the form 

minier) (6.2.1) 
z 

subject to the conditions 

Ci{x)>0,        i=l,...,m. (6.2.2) 

Here, F(x) and c»(i) are functions mapping from 3Rn -+ JR. 

Problems of this type are often further classified by the form of the constraints 

(6.2.2). The major division is made between linear and non-linear constraints. The 

constraints are also further divided into groups of equality and inequality constraints. 

The form of the constraints can strongly affect the way in which the problem (6.2.1), 

(6.2.2) is solved. Methods for problems with linear equality constraints will be discussed 

in section 6.3, and linear inequality constraints in section 6.4. Methods for non-linearly 

constrained problems are still an active research area. It is not yet clear how best to 

apply Newton's method to such problems when the number of variables is large.  For 
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this reason, and because the technical details of such methods can strongly affect the 

development of the relevant theory, we will only consider the application of truncated- 

Newton methods to linearly constrained problems. Much of what we describe will be 

relevant to the non-linear case. 

6.3.     Problems with Linear Equality Constraints 

The problem we are concerned with in this section (denoted hereafter as ECP) is 

usually written in the form 

minima;) (6.3.1) 
X 

subject to 

Ax = 6, (6.3.2) 

where A is a t X n matrix. 

The set of constraints (6.3.2) restricts the set of "feasible" points, i.e. the set of 

points which will be considered when solving (6.3.1). As usual,we denote the solution to 

ECP by a; . If x is any other feasible point, then 

A{Ax) = A{x* - x) 

= Ax  — Ax 

= 6-6 = 0. 

Also, if p is any vector satisfying 

Ap = 0, 

then 
A{x  + p) = Ax  + Ap 

= 6 + 0 
= 6, 

so x  + p is also feasible. Thus, all feasible steps from the point x* are orthogonal to the 

rows of A (or, equivalently, to the columns of AT). 

Let Z denote a matrix whose columns form a basis for the null space of AT, i.e. 

AZ = 0. Then any feasible point must be of the form x* + Zpz for some pz. If we 

examine the Taylor series for F around the point x*, we find that 

F(x* + ep) = F(x* + cZpz) = F{x*) + epT
zZ

Tg{x*) + ^pT
zZ

TG{x*)Zpz + • • •.    (6.3.3) 

Clearly, if x   is the minimizing point for the constrained problem, then 

ZTg{x*) = 0. (6.3.4) 
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The quantity ZTg will be referred to as the projected gradient. 

The condition (6.3.4) implies that g(x ) lies in the range of AT: 

0 = ZTg(x*) 

= ZT(ATgA + Zgz) 

= ZTZgz. 

Hence, gz = 0. The coefficients of the vector gA are denoted \lf...,\l and are called 

the Lagrange multipliers at x*. 

Using (6.3.4) and (6.3.3) we find that 

F(x* + p) = F(x*) + ejpT
zZ

TG(x*)ZPz + • • •, 

so that the matrix ZTGZ (the projected Hessian) must be positive semi-definite at x*. 

Thus we have obtained first- and second-order necessary conditions for a solution 

to problem ECP. Sufficient conditions, derived in the same way, are (if x* is a feasible 

point): 

(i)        ZTg(x*) = 0        (g(x*) = A\*). 

(ii)       ZTG(x )Z is positive definite. 

We now move on to derive methods for solving ECP. To do this, we return to the 

Taylor expansion (6.3.3). The function F is expanded about an arbitrary feasible point 

x in the direction Zpz with 6=1, and the series is truncated after the quadratic term. 

We obtain 

F{x + ZPz) = F{x) + pT
zZ

Tg + ypT
zZ

TGZVz. 

Setting ,JF(X + Zpz) = 0, we obtain that the step to the minimum of this quadratic is 

found by solving the projected-Newton equations: 

GzV = -9z, (6.3.5) 

where 
Gz = Z GZ, 

gz = ZTg. 

Because of the similarity between (6.3.5) and the Newton equations (2.2.3), it is easy 

to derive a modified-Newton algorithm for solving ECP by specifying that C?W and gW 

be replaced by Gz ' and g\ ' in all the relevant formulas. 

65 



Truncated-Newton methods can be extended just as easily. All that is required is a 

subroutine to compute products of the form 

y = G^v 

* 
for any v. The fact that a projected Hessian is being used is irrelevant to the algorithm. 

In the above discussion, we have not stated how to obtain Z, the basis for the null- 

space of AT. In the dense case, it is possible to derive Z from a LQ factorization of A. 

(We will assume that A has full row rank.) There exists an orthogonal matrix Q which, 

when applied to A oh the right, yields an lower-triangular matrix: 

AQ = L = {L   0),        i.e. A = QTL, 

where L is a t X t lower-triangular matrix. We partition Q conformally to L: 

Q = (Y Z), 

so that 

AQ = {AYAZ) = {L   0). 

Thus, the last (n — t) columns of Q are orthogonal to the rows of A, and Z is the 

desired basis for the null space of AT. The LQ factorization above can be computed 

using elementary orthogonal transformations (such as Householder reflections or Givens 

rotations). 

In the sparse case, it is usually preferable to use a technique known as variable 

reduction to form Z. We partition the constraint matrix A in the form 

A = (TU), 

where T is a t X t non-singular matrix. For simplicity, we have assumed that T cor- 

responds to the first t columns of A. With this partitioning of A, a matrix Z orthogonal 

to the rows of A can be defined as 

<-T7u} 
If Z is defined in this way, it need not be explicitly formed. Wc need only be able to solve 

systems of equations involving T and TT, so that all that is required is a factorization 
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of T. Note that the matrix T-1 is not obtained explicitly. To compute the product Z 

times a vector, we perform back-substitution using the factors of T. This allows us to 

exploit sparsity in the constraint matrix, although in general the condition number of the 

matrix Z obtained from variable reduction will be larger than for the matrix Z obtained 

from an LQ factorization (in that case, we will have K(Z) = 1). 

6.4.     Linear Inequality Constraints 

6.4.1.     Theory 

The problem we are considering in this section (denoted by ICP) will be posed in 

the form 

minF(x) (6.4.1) 
Z 

subject to 
Ax = b, 

, ^    ^ (6-4-2) i <x < u, v        ' 

where A is an m X n matrix. Notice that the only inequality constraints are just simple 

bounds on the variables.   General inequality constraints are converted to this form by 

the introduction of slack variables. This problem is considerably more complex than the 

equality-constraint problem ECP since we do not know in advance which bounds (if any) 

will be exactly satisfied as equalities at the solution. 

If A were the set of constraints active at the solution, then the solution of ICP 

would also be the solution of the equality-constraint problem minF(x) subject to Äx = 

b. This suggests applying techniques for the equality-constraint case to ICP. We will 

obtain the solution to problem ICP by solving a sequence of minimization problems 

subject to linear equality constraints. The objective function (6.4.1) remains the same 

in all of these subproblems, but the constraint matrix is modified to reflect the current 

assumptions about which bounds are satisfied as equalities at the solution. We will refer 

to the current set of constraints as the working set and will assume that they correspond 

to the equation Ax = b. As before, Z will be used to denote a matrix satisfying AZ = 0. 

The working set will contain a subset of the original problem constraints, and will 

attempt to predict the correct active set. Since the prediction of the active set could be 

wrong, an active set method must also include procedures for testing whether the currect 

prediction is correct and altering it if not. An essential feature of the active set methods 
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considered here is that all iterates are feasible. 

Following the development in Murtagh and Saunders [1978], the matrix A is parti- 

tioned as 

A = {BSN) (6.4.3) 

where B is a square m X m non-singular matrix, TV is m X r, and S is m X (n - 

m-r). B is called the basis matrix and its columns correspond to the bask variables. 

The columns of N correspond to the nonbask variables, i.e. those variables which are 

equal to one of their bounds. The columns of S correspond to the remaining variables, 

which are called superbask. The number of superbasic variables indicates the number of 

degrees of freedom remaining in the minimization. In the important special case of linear 

programming v/here F is a linear function, the matrix S is null. With the partitioning 

(6.4.3) of the matrix A, we can write the constraints for the subproblem in the form 

Ax 

where the components of bN are taken from either I or u, depending on whether the 

lower or upper bound is binding. 

We expand the function F in a Taylor series about some feasible point x: 

F[x + p) = F{x) + g{x)Tp + $pTG{x)p + • • •. (6.4.5) 

If F(x) were a quadratic function, then G would be a constant matrix, and there would 

be no higher-order terms in this expansion. In this case, we could obtain a constrained 

stationary point at x + p by insisting that . 

(»   o   ?)£) = <>• <"*> 
i.e. the step remains on the surface given by the intersection of the active constraints; 

also 

0+€HE °P' (6.4.7) 

i.e. the gradient at x + p is expressible as a linear combination of the active constraint 

normals. These two conditions correspond to the conditions p = Zpz and (6.3.4) in the 

previous section. 
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For a more general function F(x), the step p may not lead directly to a stationary 

point, but (6.4.6) and (6.4.7) can be used to determine a feasible descent direction. From 

(6.4.6) we have pN = 0 and pB = -Wps, where W = J3-1S. Thus, 

Notice the correspondence between this matrix and the matrix Z computed using the 

variable-reduction method in the previous section. As before, we do not explicitly 

compute -B-1, but instead compute some factorization of this matrix. Back-substitution 

is then used to compute the necessary products of W times a vector. This matrix is 

indeed orthogonal to the working set matrix A. The Lagrange multipliers (/z X)T can be 

computed using the equations 

B*n = gB + {I   0    0)G(   /   ]ps 

and 

0 
(T> \ = gN-NTiM+{0    0    I)G\    I    \ps. 

When ps = 0, these equations reduce to 

H = B-TgB 

X = gN - NT/i. 

The Lagrange multipliers can be used to modify the working set of constraints. For 

example, suppose that bound t is fixed at its lower endpoint, i.e. we are assuming that 

Xi = /,-. If the Lagrange multiplier X,- corresponding to this bound is negative, then 

the objective function F will decrease locally if x» is allowed to increase in value. This 

indicates that bound i could be dropped from the working set. A similar situation exists 

for upper bounds, but there the Lagrange multiplier should be positive if the bound is 

to be relaxed. 

Using the Taylor series (6.4.5) and equation (6.4.6), we obtain that a first-order 

condition for x* to solve ICP is that ZTg(x*) = 0. This is the same condition as for the 

equality-constraint problem. We are assuming, of course, that x* is a feasible point and 

that Ax* = b. 

The Taylor expansion (6.4.5) also leads us to a second-order condition for a solution 
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to ICP. Because the projected gradient is zero, we obtain directly that 

Gg = ZTGZ 

must be positive semi-definite at x*. 

Sufficient conditions for a minimum are slightly more complex, since the Lagrange 

multiplier for an active constraint may be zero. Also, complications can arise because a 

variable could be fixed at either a lower or an upper bound. For simplicity, we assume 

that all active bounds are lower bounds. Results for upper bounds are obtained by 

changing > to < below. Keeping this in mind, we find that x* is a solution to ICP if: 

(i) Ax* = b, I <x* <u and A x* =b. 

(ii) ZTg{x*) = 0 (where AZ = 0). 

(iii) X* > 0 (where X is obtained from (6.4.7)). 

(iv) ZTG(x*)Z is positive definite. 

(v) If X* = 0, then pTG{x*)p > 0 for all p such that pNi > 0. 

Assuming that an initial feasible point is available, the general structure of an 

working-set algorithm can be summarized as follows: 

(6.4.6)      Working-set Algorithm 

Wl. Let xW be the current point. We assume that x(fc> is feasible and 

that A is the matrix of constraints active at x^k\ 

W2. Check if x^ is the solution of the equality-constraint problem. If 

not, go to step W5. 

W3. Calculate X = gN - NTp. If X satisfies the second-order sufficient 

conditions for a minimum, then x* is the solution to ICP. Terminate the 

algorithm. 

W4. If X, < 0 for some variable x^t at its lower bound (or X > 0 

for some xNi at its upper bound), compute a direction pW such that 

gWTpW < 0, pig > 0 (p$ < 0), and pj*> = 0 for i ^ j. For such a 

p(fc), the t'-th bound becomes inactive and is deleted from the active set. 

Go to step W6. 

W5. {g{k) =£ AX) Construct a direction pW such that AV*
}
 = 0, 

pCO p(*) < o(i.e. a descent direction for the equality-constraint problem). 

This can be done by solving the projected-Newton equations for the 
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equality-constraint problem. 

W6. (line search) Normally, the line search would be based solely on 

a "sufficient decrease" in the objective function F. In this context, it is 

possible to run into a formerly inactive bound while searching along pW. 

If a new constraint is encountered during the linesearch, it is then added 

to the active set. Go to step Wl. 

Because there is possibly some choice in step W4 as to which constraint to drop 

from the active set, various active-set strategies have been suggested for solving ICP. For 

this thesis, where we are concerned with the application of truncated-Newton methods, 

the details of the strategy are not important. 

6.4.2.     The    Application    of    Truncated-Newton    Methods    to    Inequality- 

Constraint Problems 

Since the algorithm described in the previous section computes a search direction p 

by solving a set of projected-Newton equations, it may appear that truncated-Newton 

methods can be applied directly for the solution of ICP. If no preconditioning is used, 

this is indeed true. The construction of pW \n step W5 is then a local problem involving 

the (approximate) solution of a set of linear equations. 

However, when preconditioning is a part of the algorithm, certain complications 

arise. With equality constraints, the projection matrix Z remains constant; but with 

inequality constraints, the projection matrix, and hence the structure and size of the 

projected-Newton equations (6.3.5), can change from iteration to iteration as the active, 

set changes. In this section, we describe how to modify the preconditioning matrix to 

reflect these changes. 

In order to simplify the discussion, we will assume (without loss of generality) 

that bounds are added or deleted one at a time. We will also assume that a diagonal 

preconditioning is being used. More complex preconditionings can be used, and it is 

straightforward to adapt the following discussion to the. more general case. In fact, 

the ideas here are based on the presentation in Gill and Murray [1973b] where a (full) 

quasi-Newton approximation to the Hessian is being modified. 

Deleting a bound corresponds to deleting a column (say the last) from A. This 

implies that a column must be added to Z: 
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Z = (Z\ z). 

Then 
r fZTGZZTGz\ 

1 GZ-\zTGZ zTGzf 

(For large-scale problems, this matrix would never be explicitly computed; we use it 

here only as a theoretical tool.) Let D be our diagonal preconditioning corresponding to 

ZTGZ. A natural choice for D, the new preconditioning, is thus 

*-("> 

where a = zTGz (or a — 1 if this quantity is expensive to compute). 

Adding a bound is a slightly more difficult problem. This corresponds to reducing 

the size of Z by one column. If we are deleting the g-th super basic variable, then we 

just delete the 9-th diagonal element of D to obtain D. Deletion of a basic variable 

can be achieved by interchanging the basic variable with a superbasic variable, and then 

deleting the new superbasic column as indicated. 

The interchange of the p-th basic variable with the g-th superbasic variable can be 

described by an equation of the form 

Z = Z{I + eqv
T), 

where e, is the g-th unit vector and v is defined by the equations 

BTitp = ep, 

V = STnp, 

yq = yTeq, 

v = — {y + eq). 
Vq 

These quantities are easily computed. 

We would now like to approximate the diagonal D of 

ZTGZ = (/ + eqv
T)TZTGZ{I + eqv

T) 

given Z and an approximation D to the diagonal of ZTGZ.  The formula for the new 

diagonal element d» is 

3, = di + IviZ^Gzi + z^Gzqv1, 
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where z,- is the t'-th column of Z. Unless the values {Z^GZJ} are inexpensive to compute, 

updating D in this manner will not be feasible. As a result, we suggest simply deleting the 

g-th column of D; there is little justification for applying the transformation (J + eqv
T) 

directly to D. 

Further details concerning the treatment of constraint matrices for large problems 

can be found in Murtagh and Saunders [1978]. 

6.5.     Least-Squares Problems 

Least-squares problems are concerned with finding a point x which minimizes the 

sum of squares of nonlinear functions 

m 

1=1 

Such problems can be solved using the minimization algorithms described in the previous 

chapters, but the special form of the function F suggests the use of more specialized 

techniques. 

The gradient vector g(x) and Hessian matrix G(x) of F[x) are given by 2 J(x)Tf(x) 

and 2{J{x)TJ[x) + B{x)) respectively, where J[x) is the m X n Jacobian matrix of f(x) 

whose i-th row is V/,(z) = {dfi/dxl,dfi/dza,...,dfi/dzn), B{x) = £,1i /i(x)G,-(ar) 

and Gi(x) is the Hessian matrix of fi[x). [F(x) is assumed to be twice continuously 

differentiable, although the methods discussed in this section will often work when this 

condition does not hold.) The restriction that m is greater than or equal to n serves only 

to simplify the notation. 

If Newton's method is applied to the solution of (6.5.1), the special form of the 

Hessian matrix and gradient vector leads to the following set of linear equations for the 

Newton direction 

(J(xW)TJ(xW) + B(xW))pW = -;(iW)T/(*W). (6.5.2) 

The Gauss-Newton method was the first designed to exploit the special structure 

of the Hessian matrix and gradient vector which occurs in least-squares problems. The 

method computes the direction of search as the solution to 

Jix^fA^P^N = -/(x(fc))T/(z(fc)). (6.5.3) 
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These equations are obtained by neglecting the second-derivative matrix B[x^) in (6.5.2). 

The Gauss-Newton method is intended for problems where ||2?(x)|| is small compared to 

||J(i)TJ(x)||, such as the so-called "small-residual problem" where f(x) —*■ 0 as x —► x . 

For these problems the Gauss-Newton method will ultimately converge at the same rate 

as Newton's method, despite the fact that only first-derivative information is used. We 

will concentrate on that case here. 

Truncated-Newton methods can be applied directly to the solution of the equations 

(6.5.3) (or even (6.5.2) if the second derivative information in B(x) is available). The fact 

that the Hessian matrix and gradient are of a special form is irrelevant to the truncated- 

Newton algorithm. 

If we assume that the matrix J is of full rank, then the system of equations (6.5.3) 

will have a positive-definite coefficient matrix. Thus, unlike when we were solving more 

general optimization problems, it is possible to use the regular linear conjugate-gradient 

algorithm to approximately solve (6.5.3). It is possible to use the algorithm described in 

section 2.4, if we set A = JTJ. However, because of the factored form of the coefficient 

matrix in (6.5.3), and because we would like to precondition the linear algorithm, the 

following set of formulas is to be preferred: 

Given po. Set sQ = f — Jp0, TQ = JT
8Q. 

For g = 0,l,... 

zq = M~lrq 

uq = zq + /?,«,_ 1 

/?,= 
T zqr %lZq-fq-l 

ßo = 0 
v1 = Juq 

Xq+1 = xq + aquq 

Q, = zTr 9 q/VqV1 
8q+l = 8q — aqvq 

r9+l = J   8q+l 

Next q. 

Here, M is some approximation to JTJ. 

• The only remaining problem is how to generate the preconditioning matrix M. When 

the matrix J is available, then we would always use diag{jTj}. Otherwise, we could 

use one of the diagonal preconditionings described in Chapter 5. They require a pair 

of vectors (u,Gu), or in this case [u,JTJu). When the linear algorithm is programmed 
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using the formulas above, the vector JTJu is not a natural by-product of the algorithm. 

However, if we compute the difference between the successive residuals 

rq+i -rq = J^Sg+l - 8q) 

= —aqJ
TJuq, 

we are able to obtain the desired vector. 

When the derivatives of the functions /,• are available, it is also possible to solve the 

full Newton equations (6.5.2) using a linear conjugate-gradient algorithm. If the matrix 

J were sparse, then this algorithm could be preconditioned using JTJ. Otherwise, the 

diagonal of JTJ or an approximation to it could be used. 
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7     Numerical Results 

7.1.     Introduction 

In this Chapter we discuss the numerical behavior of several of the methods dis- 

cussed earlier. It was not feasible to test every combination of techniques that has been 

described, but we have attempted to ascertain through selective testing the most promis- 

ing version of a truncated-Newton algorithm for general usage. The method used to 

compare algorithms consists of applying them to a set of test problems. We do not claim 

that this is a completely satisfactory means of comparison, but we believe that, if the 

test problems are selected carefully, the evidence obtained can be a valuable aid in the 

selection of the best algorithm. 

This method of testing has many drawbacks. One difficulty is the volume of data 

that subsequently needs analyzing. We have displayed the raw data together with an 

aggregation of the results. Too much emphasis, however, should not be placed on the 

aggregated numbers since they are unduly weighted by the more difficult problems. An 

alternative form of display is to enter as 1 the best result and have all other entries be 

their multiple of this result. The drawback to this method is in our view more serious 

since greater emphasis is then placed on problems that are easily solved. 

The popularity and success of battery testing is largely due to the fact that for many 

algorithms the differences in results are so large as to leave little doubt as to the correct 

conclusion. It is also a useful technique for demonstrating that an algorithm is poor. The 

converse, however, is not always true. If an algorithm fails where others easily succeed it 

demonstrates a flaw in that algorithm. If an algorithm is simply a little slower or faster 

then this could merely be due to the luck of the draw. 

7.2     The assessment criterion 

All optimization software requires a criterion for terminating the computation of the 

sequence {x^}. Ideally, if we wish to measure the comparative efficiency of routines we 

should set the same termination criterion in all the routines tested and then compute 

the cost of a minimization, in terms of the number of function evaluations for instance. 

However, there is no universal agreement on what is the best termination criterion and 

a different criterion used by another researcher may result in a wide variation in the 
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accuracy of the answer obtained. The question remains, therefore, as to the point at 

which we should assess the efficiency of the various methods. The assessment criterion 

used here is to take the first point x^ for which 

Ft» - F(x*)< r(l + \F(x*)\), (7.2.1) 

where T is a scalar. Some authors have argued against the use of (7.2.1) because it includes 

F[x ), which is unknown on real problems. We believe that such authors are confusing an 

assessment criterion, where the use of F[x ) is legitimate, with a termination criterion, 

where it is not. 

If the criterion (7.2.1) is to give a realistic assessment of the performance of an 

algorithm, the choice of T must give a point x^ which is close to a final estimate of x* 

obtained with a realistic termination criterion. The relative performance of algorithms 

with superlinear convergence is almost invariant with the choice of T and a very small 

value can be used. For example, on an IBM 370/168, where the function can be computed 

to approximately fifteen decimal places in double precision, a reasonable choice of T is 

10~10. However, for conjugate-gradient type methods, which exhibit a linear rate of 

convergence, the performance can vary widely with the choice of T. It is not unusual 

for the number of function evaluations to be three times greater for T = 10-10 than for 

T = 10~5. In this case it is important that a moderate termination criterion be used. In 

all the tests carried out for this study, T was set at 10-5. 

7.3     The algorithms tested 

The results of this chapter, in addition to exhibiting the performance of a variety of 

truncated-Newton algorithms, illustrate the numerical behaviour of three algorithms for 

general unconstrained minimization. These are: 

1. Algorithm PLMA 

Diagonally preconditioned two-step BFGS formula with accumulated step (see Gill 

and Murray [1979]). 

2. Algorithm MNM 

A modified Newton method using first and second derivatives (see Gill and Murray 

[1974a]). 
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3.    Algorithm QNM 

A quasi-Newton method using the full n X n BFGS update of the approximate 

Hessian Matrix (see Gill and Murray [1972]). 

The use of these accepted and widely-tested algorithms gives us an objective test of the 

overall effectiveness of our truncated-Newton methods. 

7.4     The test examples 

The provision of suitable test problems is extremely difficult. Problems that are 

used to measure the efficiency of algorithms for small dense problems are completely 

unsatisfactory since the algorithms considered here are intended mainly for large-scale 

problems. For example, it is pointless to test a truncated-Newton method on a very small 

problem since the algorithm will be effectively performing a full Newton iteration. 

A serious difficulty with using very large test problems is that, for all but the most 

trivial examples, the CPU time necessary to compute the objective function will be very 

large. This is typically the case if we attempt to use real-world problems for testing 

purposes. Moreover, it is desirable that problems be defined in such a way that they 

may be used by other researchers. Large-scale real-world problems almost invariably are 

written in a non-portable form or can be run only with vast quantities of numerical data. 

In this study we have attempted to compromise on these issues by collecting a set of 

non-trivial problems that can be run with moderate ease at other installations. Eighteen 

problems are considered. Of these, 16 problems are of dimension 50 or greater and 7 

problems are of dimension 100. It is necessary to present an extensive number of results 

because the performance of conjugate-gradient-type methods is generally erratic. If we 

are to identify which strategy gives a true improvement in performance, a wide spectrum 

of results must be considered. 

The test examples may be separated into two classes.    The first class contains 

problems whose Hessian matrix at the solution has clustered eigenvalues; the second 

contains problems whose Hessian matrix has an arbitrary eigenvalue distribution. 

Example 1.      Penl (Gill, Murray, and Pitfield [1972]) 

■F(*)=«£>-i)»+6(£*?-iY 
t=i \=i     ' 
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The solution varies with n, but a:,- = x,^lt t = l,...,n - 1. All the runs made 

were with a — 1, b = 10~3. With these values, the Hessian matrix at the solution 

has n - 1 eigenvalues 0(1) and one eigenvalue O(10-3). The Hessian matrix is full 

and consequently, for large values of n, conjugate-gradient type methods are the only 

techniques available. 

Example 2.      Pen2 (Gill, Murray, and Pitfield [1972]) 

F(x) = a J2((eXi/10 + eXi-l/10 ~ ei)' + (*I</10 ~ e~1/10)2) 

where c< = e*'/10 + e(*'-i)/i° for i = 2,..., n. The solution varies with n, but at,- = aij+i 

for t = 1,..., n — 1. This example was also run with a = 1 and b = 10-3. For these 

values the Hessian matrix at the solution has n — 2 eigenvalues 0(1) and two eigenvalues 

O(10~3). The Hessian matrix is full. 

Example 3.      Pen3 (Gill, Murray, and Pitfield [1972]) 

!n-2 
1 + e*n J2 (x* + 2l»+i + 10a:«+2 ~ !)2 

+ (jC (*•■ + 2x»+i + 10x<+* - !)2)(£ (2a;.- + *<+i - 3)2) 
n-2 'I 

+ e»-» £ (2a;,- + xl+1 - 3)H 

(n v2       n/2 

At the minimum, this function has n/2 eigenvalues 0(1) and n/2 eigenvalues O(10-3). 

The Hessian matrix is full. 

The remaining examples have arbitrary distributions of eigenvalues at the solution. 

Example 4.       Chebyquad (Fletcher [1965]) 

F{x) = J2 M*)*> 

where 

Mx) = JQ r;(*)d*-!£>;(*,■),     ,- = i,...,«, 
3 = 1 
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and T^(x) is the i   -order shifted Chebyshcv polynomial. The Hessian matrix is full. 

Example 5.       GenRose 

This function is a generalization of the well-known two-dimensional Rosenbrock 

function (Rosenbrock [I960]). 

F(x) = 1 + £(l00(z, " *v-i)2 + (1 " *.•)')• 
»=2 

Our implementation of this function differs from most others in that F(x) is unity at 

the solution rather than zero. This modification ensures that the function cannot be 

computed with unusually high accuracy at the solution and is therefore more typical of 

practical problems. ° ) 

The next three examples arise from the discretization of problems in the calculus of 

variations. Similar problems arise in the numerical solution of optimal control problems. 

The general continuous problem is to find the minimum of the functional 

J(x[t)) = j  f(t,x(t),x'(t))dt, 

over the set of piecewise differentiable curves with the boundary conditions x(0) = a, 

x[l) = b. If x(t) is expressed as a linear sum of functions that span the space of piecewise 

cubic polynomials then minimization of J becomes a finite-dimensional problem with a 

tri-diagonal Hessian matrix. 

Example 6.       Call (Gill and Murray [1973a]) 

J(x(t)) = J  L{t)2 + x'{t) tan"1 x'{t) - log(l + x'(*)2)H dt, 

with the boundary conditions x(0) = 1, x(l) = 2. 

Example 7.      Cal2 (Gill and Murray [1973a]) 

J(x{t)) = J  |l00(x(i) - x\tff + (1 - x\t)f\ dt, 

with the boundary conditions z(0) = x(l) = 0. 

Example 8.      Cal3 (Gill and Murray [1973a]) 

j(xW) = /o
1{e-2^)2(x'W2-l)}^ 
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with the boundary conditions x{0) = 1, x(l) = 0. 

Example 9.      QOR (Toint [1978]) 

50 33 

^) = E^?+EA*- E «/ + E *i). 
t=i t=i    v       ygi4(t)        yeß(.)    ' 

where the constants a,-, ft, d,- and sets A(i) and ,8(1) are described in Toint's paper. This 

function is convex with a sparse Hessian matrix. 

Example 10.      GOR (Toint [1978]) 

50 33 

F{x)='£ci(xi)+Yibi(yi), 
,=1 t-=i 

where 
( OCiXi loge(l + Xi), Xi > 0, 

{-otiXi loge(l + a;,),        Xi < 0, 

and 

i€A(t)        yes(t) 

. ,  *     ,. ~>ge(l + j,,),      Vi >0, 
OilVi) = 

», < 0. 

The constants a,-, A, d» and sets A(i) and 2?(i) are defined as in Example QOR. This 

function is convex but there are discontinuities in the second derivatives. 

Example 11.       ChnRose (Toint [1978]) 

25 

F(x) = 1+J2 0<K-i " *.?)2 + (1" «O"), 
t=2 

where the constants a» are those used in the example QOR. The value of F(x) at the 

solution has been modified as in Example 5. The Hessian matrix is tri-diagonal. 

7.5     Starting points 

The starting points used were the following. 

Start 1 

z<°> = (0,0,...,0)r. 
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Start 2 

x(0) 

Start 3 

= (_1_ JL      _JL_Y 
\n + l'n+l""'n + lj 

x(°)=(l,-l,l,-l,...)r. 

Start 4 

^=(-l,-l,...,-l)a 

7.6     Description of the tests 

All the algorithms are coded in double-precision Fortran IV. The runs were made on 

an IBM 370/168, for which the relative machine precision, e, is approximately 10-15. 

Each algorithm requires two additional user-specified parameters: X, the bound upon 

the change in x at each iteration, (the quantity ||a;(fc+1) — z^l^) and Feat, an estimate 

of the value of the objective function at the solution. For all problems, the value of X 

was set at 10, and Feat was set to the value of F[x) at the solution. 

For the initial testing, a limited set of test functions was used. This set includes: Penl 

(N = 50, Start 3), GenRose {N = 50, Start 2), Call [N = 50, Start 1), and Chebyquad 

{N = 20, Start 2). These four functions have quite different behavior, and it was found 

that performance on these test functions was often indicative of the performance of an 

algorithm on the complete battery of test functions. For these limited tests, only the 

value i\ = .25 was used and an time limit of 15 seconds was placed on each test run. 

In order to determine a "good" truncated-Newton algorithm and also to compare the 

performance of this good truncated-Newton algorithm against better-known algorithms, 

more complete tests were carried out. The complete set of test functions was used, and 

the values r\ = .25, .1, .001 were tried. Many of these numerical results were obtained by 

Gill and Murray [1979]. Since the optimal value of r/ is often larger for algorithms which 

use second-derivative information, a series of tests with r\ = .5, .7, .9. was also carried 

out. Finally, a special set of comparisons against Newton's method was done. 

The full set of results is contained in the tables in the appendix. Each entry in a 

82 



table consists of a pair of values: the first is the number of non-linear iterations required 

to find the solution, the second is the number of function/gradient evaluations (unless 

otherwise indicated, this number includes the function evaluations in the linesearch as 

well as those used to compute the matrix-vector products in the linear sub-algorithm). A 

number of the test functions have sparse Hessian matrices, and in these cases it is possible 

to use sparse finite-differencing to compute these matrices at the beginning of each non- 

linear iteration. A lower-case "s" at the end of a function name (for example, GenRs) 

indicates that sparse finite-differencing is being used. (The routines for computing the 

sparse Hessian matrices were developed by Thapa [1980].) 

7.7     Discussion of results 

The first tests were used to determine the better preconditioning strategies. These 

are summarized in table 1. The routine used was a preconditioned Lanczos algorithm 

with forcing function (4.3.6) and the standard forcing sequence (4.4.3). PLMA was the 

non-linear outer algorithm. The terms used to describe the preconditioning strategies 

correspond to section 8.2.3; the letters DNC indicate that the algorithm did not converge 

in 15 CPU seconds. 

The results indicate that the diagonal preconditionings are the most effective. The 

exact diagonal of the Hessian often performs very well; the only exception is for the 

function GenR, where the Hessian matrix is frequently indefinite. A better strategy for 

handling negative diagonal elements might improve the result in this case (for these runs, 

negative diagonal elements were replaced by their absolute value). 

Tables 2 and 3 show the effects of different forcing sequences. The exact BFGS 

diagonal preconditioning was used in combination with the routine described for table 

1. Table 2 was made using the forcing function (4.3.6) and table 3 with function (4.3.5). 

The tests in table 2 follow naturally from the discussion in section 4.4; those in table 3 

were made because the standard forcing sequence (<j>k = min {l/fc, ||(r"||}) was found to 

be too stringent in combination with function (4.3.5). 

Our experience with alternative forcing sequences has been inconclusive; the tests in 

Table 2 were included to show how well they sometimes performed on specific functions. 

The standard forcing sequence is quite effective for the class of problems chosen. Table 

3 shows that scaling this forcing sequence by 1.5 is worthwhile when function (4.3.5) is 
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being used. 

Tables 4A-4E were used to choose the optimal truncated-Newton routine. The three 

approximate diagonal preconditionings were used on all test problems with 77 = .25 in 

combination with the following routines: 

1. TNI—a preconditioned Lanczos algorithm with the standard forc- 

ing sequence and forcing function (4.2.2), 

2. TN2—a preconditioned Lanczos algorithm with the standard forc- 

ing sequence scaled by 1.5 and forcing function (4.3.5), 

3. TN3—as in TNI, but with forcing function (4.3.6), 

4. MINR—a preconditioned MNRES algorithm. 

All routines use PLMA as the non-linear outer algorithm. The numbering of the precon- 

ditionings corresponds to the list in section 8.2.3. 

The totals from all the runs are listed in table 4E. The best routine could be decided 

upon in a number of ways: 

1. iteration count 

2. function evaluations (regular) 

3. function evaluations (sparse) 

4. function evaluations (total) 

5. function evaluations (regular) plus iteration count 

6. function evaluations (sparse) plus iteration count 

7. function evaluations (total) plus iteration count 

With the exception of criteria 2 and 5 where TN2 PC=1 is best, the totals indicate that 

TNI PC=3 is the optimal routine. 

In order to ascertain the overall effectiveness of truncated-Newton algorithms, 

routine TNI PC=3 (hereafter referred to simply as TN) was compared with PLMA, 

MNM, and QNM on the full set of test functions for 77 = .25, .1, .001. In addition, a very 

simple truncated-Newton algorithm was examined both with and without an exact BFGS 

diagonal preconditioning (see section 8.3.2). These routines are referred to as PBTN and 

BTN, respectively (the initials P and B stand for "preconditioned" and "basic"). The 

results of these tests can be .found in tables 5A-5E; NR indicates that a test was not run, 

and NA that a total is not available. 

As table 5E indicates, TN only requires 50% to 80% as many function evaluations 
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as PLMA to solve the full set of test problems. This seems a significant reduction. When 

sparse finite-differencing is used, both PBTN and BTN can compare favorably with TN. 

Without this feature, however, they are considerably slower. This is especially true of 

the unpreconditioned routine BTN; a major factor is the performance of this routine on 

the problem Call N = 100. 

The set of tests summarized in tables 6A and 6B shows the performance of routine 

TN with different values of JJ. Regardless of which performance measure is used, .25 

is always the overall optimal value of r\ for this routine. The results were insensitive 

to the various choices of i). This is in marked contrast to PLMA. The main reason for 

this insensitivity was that the initial step was close to the minimum along the search 

direction. 

The final set of tests, summarized in tables 7A and 7B, are a special comparison of the 

truncated-Newton and modified-Newton algorithms. When TN and MNA were compared 

in the tables 5, the work required to compute second-derivative information was ignored 

for MNA but counted for TN, even though TN only computes partial second-derivative 

information whereas MNA computes the full Hessian matrix. In the tables 7, these 

two routines are evaluated in a fairer way. It is assumed that, at the beginning of each 

nonlinear iteration, the full Hessian is evaluated and then used either to solve the Newton 

equations (in the case of MNA) or to compute the necessary matrix/vector products (for 

TN). As a result, in the number pairs in the tables, the first number indicates the 

number of Hessian matrices computed, and the second the number of function/gradient 

evaluations used in the linear search. As the totals indicate, the truncated-Newton 

algorithm requires fewer Hessian matrices as well as fewer function/gradient evaluations. 

In fact, TN is almost twice as efficient as MNA. This is especially surprising since TN is a 

routine designed for large-scale function minimization and not for general optimization, 

like MNA. 

7.8     A supplementary test problem 

• Up until this point, all of the algorithms have been tested on a particular set of 

test problems. This raises the question of whether a good truncated-Newton algorithm 

has been found or whether we have just found the optimal algorithm for this set of 

test functions. In addition, for practical reasons we have limited ourselves to relatively 
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small test functions (n < 100). For this reason, we now test algorithm TN on a larger, 

independent test example. 

The function is taken from Murtagh and Saunders [1980]. It investigates the optimal 

control of a spring, mass, and damper system. In its original form, the problem has a 

quadratic objective function and a set of equality and inequality constraints: 

T 

2 
min/(x,y,«) = -J]i? 

t=0 

subject to 
xt+i = xt + 0.2yt 

Vt+i — Vt- O.Oly? - 0.004a;t + 0.2«t 

-0.2 <ut< 0.2 

Vt > -1.0 

for t = 0,..., T - 1, and 

XQ = 10,        y0 = 0,        yr = 0. 

The starting point used was xt = 0, yt = — 1 (t = 0,..., T), and ut = 0 (t = 0,..., T — 

1). For these tests, T = 100, and so there are 302 variables in all. 

Since this is a constrained optimization problem, and algorithm TN is only designed 

to solve unconstrained problems, we minimize a related penalty function: 

F(x, y, u) = pf(x, y, u) + cTc. 

Here, c is a vector with one component for each constraint above. For example, ci = 

Xi — XQ — 0.2yo- If Ci is a component corresponding to an inequality constraint such as 

yt > —1.0, then c,- = yt + 1.0 if yt < —1.0, and ct- = 0.0 otherwise. The parameter p is 

a penalty coefficient; the smaller its value, the more stringently the constraints must be 

satisfied. For our tests, p was set equal to 10-3, 10-5, and 10~7. The minimal value of 

the objective function / subject to the given constraints is 1186.382. 

Setting the penalty parameter p = 10-3 was not sufficient for our purposes, since 

the minimum of the penalty function was quite different from the minimum of the original 

function; in this case, the final value of / was 729.2, not even close to the optimal value. 

There were also problems with p = 10-7, but for quite different reasons. Recall that 

the convergence criterion for the algorithm is given by (7.2.1), where r = 10-5. Here, 

Pm fmin = P X 1186.382 = 1.2 X 10~4, so that only two digits of the optimal function 
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value were obtained. 

For p = 10-5, the final computed function value was / = 1190.384, which is 

close to the optimal value of the constrained function. The value of cTc, the square 

of the norm of the constraint violations, was approximately 10~"*. When second deriva- 

tives were available to compute the matrix/vector products, algorithm TN required 168 

function/gradient evaluations to minimize this penalty function. Murtagh and Saunders 

[1980], using a projected Lagrangian algorithm, required 203 function/gradient evalua- 

tions to obtain a solution with cTc < 10-12. Although these two results are not directly 

comparable, they do indicate that the truncated-Newton algorithm is effective in solving 

this problem. When the matrix/vector products were computed using finite differencing, 

algorithm TN required 1727 function/gradient evaluations to minimize F. If sparse finite- 

differencing had been used to approximate the Hessian, 423 function/gradient evaluations 

would have been used (each Hessian can be computed using five gradients). 

There is reason to assume that truncated-Newton algorithms will in general perform 

well on penalty functions. Because of the special form of F, the Hessian matrix will often 

have two clusters of eigenvalues. The first, corresponding to the objective function p • /, 

will be O(p); the second, corresponding to the penalty term, will be O(l). The Lanczos 

algorithm, applied to the soluton of the Newton equations, works well if the matrix has 

only a few clusters of eigenvalues. Also, the Lanczos algorithm is able to quickly and 

accurately approximate the extreme eigenvalues of a matrix (see Parlett [1980], section 

12-5). Hence, if a truncated-Newton algorithm is applied to a penalty function, where at 

each stage the Newton equations involve a matrix whose eigenvalues fall into two clusters 

at the ends of the spectrum, good performance should result. 
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8     Adapting Truncated-Newton Methods 

8.1.    Introducton 

When Truncated-Newton methods were presented in Chapter 3, the basic algorithm 

was deliberately left vague. This was because there are many ways in which such an 

algorithm can be implemented. At each step, a choice must be made about how a certain 

result or effect is to be achieved. 

Some possible choices were outlined, or at least mentioned, in the succeeding chap- 

ters. In Chapter 3, algorithms for approximately solving the Newton equations were 

developed. In Chapter 4, we described ways of terminating the linear algorithm. And in 

Chapter 5, it was shown how the method could be preconditioned using other linear and 

non-linear methods. 

When designing a program for a specific computer, or when choosing a method to 

solve a specific problem, decisions must be made about which method to use and how it 

will be implemented. In the case of a truncated-Newton method, many rather detailed 

options have to be selected in order to obtain a usable algorithm. 

Often, the first question asked is which algorithm is the most efficient for solving the 

given problem or a wide class of problems. Answers to this question are usually based on 

numerical tests, which were the subject of Chapter 7. But this is not the only criterion 

for selecting an algorithm. Another important question is which method is most stable. 

This question can sometimes be answered absolutely on the basis of theoretical results 

from perturbation theory. 

Many other questions arise because of more practical issues such as: (a) the expense 

of computing the function being minimized, (b) the availability of second derivatives, (c) 

the size of the computer, (d) the availability of routines in a program library, (e) the 

number of times a problem is to be solved, etc. 

Until recently, it was generally assumed that researchers would be working on a large 

central computer, and that professionally written software would be available on-line in 

a subroutine library. With the rise of the small-computer industry, this assumption is 

now often false, and it is now necessary to take into account the effect of small machines 

when designing algorithms. On a small computer, the size of the program can be as 

important a consideration as the size of the problem.  This is not just because storage 
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space is at a premium: numerical program libraries for small machines are still rare, and 

the user must often write his own programs or manually input commercial programs. 

Short and simple algorithms can greatly reduce the likelihood of error. 

In addition, small computers arc often owned by the user, and are generally used by a 

small group of people only. This means that a routine considered slow in a large-machine 

environment can be attractive if it offers a substantial reduction in storage requirements. 

It could be left to run for long periods, for example overnight, with little inconvenience. 

This can greatly influence the choice of an algorithm; the optimal routine for a large 

machine can have little resemblance to the optimal routine for a mini-computer. 

We mentioned above several questions related to the actual problem being solved— 

the difficulty of computing the function, and the availability of second-derivative infor- 

mation, for example. Choosing a method based on these criteria often depends on the 

efficiency of the method, and the choice must be made on the basis of numerical tests. 

Some decisions, however, can be made a priori, such as general decisions about solving 

the Newton equations and about how matrix/vector products are to be computed. 

In order to simplify the process of choosing a specific algorithm, we summarize in 

section 8.2 the possibilities for a truncated-Newton algorithm. There we list the choices 

for each step of the algorithm, indicate operation and storage counts, describe possible 

interactions with other modules in the method, and mention difficulties that might be 

encountered in programming. In 8.3, a couple of sample situations are described, along 

with suggestions about how to put together a truncated-Newton algorithm which is well- 

suited to the needs of each case. 

8.2.     Choices for sub-algorithms 

In order to specify a truncated-Newton algorithm, five sub-algorithms must be 

selected. These are: 

1. The algorithm to approximately solve the Newton equations (2.2.3). 

2. The non-linear outer algorithm. 

3. The linear preconditioning strategy. 

4. The termination criterion and forcing sequence for the linear algorithm. 

5. The algorithm for computing the Hessian/vector products. 

These sub-algorithms have been discussed at length in preceding chapters, but mainly 
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from a theoretical point of view. In this section, we shall take up issues which would 

arise when programming and using truncated-Newton methods. 

In the succeeding sub-sections, we will examine each of these choices separately, 

indicating operation and storage counts. The notation for vectors is global, so that 

if a vector name appears in two sections, the same vector is being referred to and no 

additional storage is required. Generally, all choices may be made independently, but 

usually only one choice may be made from each section. Exceptions to this rule will be 

noted as they occur. 

For reference, here is a list of the vectors used below: 

x the current estimate of the minimizing point F 

p search direction 

g gradient 

Po        initial search direction, used in Beale's method 

D        vector which represents diagonal preconditioning matrix 

D\       temporary value of D 

E        represents sub-diagonal of preconditioning matrix 

Ei       temporary value of E 

Si        scratch vectors 

8.2.1.     Approximately solving the Newton equations 

We shall consider six ways of approximately solving the Newton equations (2.2.3): 

1. conjugate-gradient (section 2.4) 

2. preconditioned conjugate-gradient (Concus et. al [1976]) 

3. Lanczos (sections 3.3-3.5) 

4. preconditioned Lanczos (sections 3.3-3.6, 3.8) 

5. MINRES (section 3.7) 

6. preconditioned MINRES (sections 3.7-3.8) 

The storage requirements and operation counts for these methods are summarized in 

Table 8.1 below. Some problems that might be encountered when using these methods 

are also mentioned briefly there. For the reasons given in section 3.2, SOR-rclated 

methods will not be examined. Clearly, only the preconditioned algorithms can be used 

in combination with a non-linear algorithm or a linear preconditioning scheme. 
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The conjugate-gradient algorithm is the simplest algorithm that we consider feasible 

for solving the Newton equations. Unfortunately, the conjugate-gradient method is only 

designed to solve systems of equations with positive-definite matrices. In an optimization 

setting where the Hessian matrix in the Newton equations can be indefinite, this is a 

serious deficiency; but if a given problem is known to have a positive-definite Hessian 

everywhere, this may not matter. When the Hessian is indefinite, the conjugate-gradient 

method may be unstable. The addition of preconditioning can greatly improve the 

performance of this method at little computational cost. Therefore, except under extreme 

circumstances, a preconditioned conjugate-gradient method is always to be preferred over 

the regular conjugate-gradient method. 

ALGORITHM STORAGE OPERATIONS COMMENTS 

conjugate-gradient (eg) P» »1 - «3 8n, 

matrix-vector product 

only for positive- 

definite systems 

preconditioned eg p, Si - 84 8n, 

matrix-vector product, 

preconditioning step 

only for positive- 

definite systems 

Lanczos p, 81 — 84 12n, 

matrix-vector product 

complex to program 

preconditioned Lanczos P, «1 - «5 12n, 

matrix-vector product, 

preconditioning step 

complex to program 

MINRES p, «i - s5 16n, 

matrix-vector product 

complex to program 

preconditioned MINRES P, »1 — «6 16n, 

matrix-vector product, 

preconditioning step 

complex to program 

Table 8.1       Choices for the linear algorithm 

In order to be able to treat indefinite systems of equations, it is possible to use 

a method based on the Lanczos algorithm for tridiagonalizing a symmetric matrix. 

It is slightly more expensive to use than the conjugate-gradient method; it is also 

more complex to program since it involves three separate sub-algorithms: the Lanczos 

tridiagonalization, the modified-Cholesky factorization, and the conjugate-gradient step. 

91 



In a general setting, though, it is a stable and predictable way of handling indefinite 

Hessian matrices, which is not true of the conjugate-gradient algorithm. Again, it is easy 

to add a preconditioning step. 

The MINRES algorithm is a variant of the Lanczos algorithm which guarantees that 

the norm of the residual decreases at each iteration. It is based on a QR factorization 

of the tridiagonal matrix resulting from the Lanczos process. Programming this method 

is comparable to programming the Lanczos method above, and it is equally easy to 

precondition the algorithm. 

8.2.2.     Non-linear algorithms 

We shall look at five non-linear outer algorithms: 

1. linesearch (section 1.4) 

2. non-linear conjugate-gradient (section 2.4) 

3. Beale's method (Gill and Murray [1979]) 

4. limited-memory quasi-Newton (section 2.5, Gill and Murray [1979]) 

5. quasi-Newton (section 2.3) 

Describing a linesearch as a non-linear outer algorithm may be something of an over- 

statement. We are referring to the following method: 1) approximately solve the Newton 

equations at the current point to compute a search direction, 2) use this search direction 

in the linesearch to compute a new point. 

ALGORITHM STORAGE OPERATIONS COMMENTS 

linesearch P) 9> z> «1 > 3n, difficult to program 

non-linear eg P, 9 3n — An, requires a linesearch 

Beale's method P> Po, 9 8n-10n, requires a linesearch 

limi ted-memory 

quasi-Newton method 

(k updates) 

p, g, 81 — a2fc k(k + l)/2 X 

(one update) 

requires a linesearch, 

may be preconditioned 

Table 8.2      Choices for the non-linear algorithm 

With the exception of the line-search, all of these algorithms are used to generate 

a preconditioning for the linear algorithm, i.e.   the formulas for the outer algorithm 
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implicitly describe some linear operator which can then be applied to any vector. Thus, 

these algorithms can be used only with an algorithm which can be preconditioned. Trust- 

region methods could also be used as non-linear algorithms for a truncated-Newton 

code, but they will not be discussed here. A summary of operation counts and storage 

requirements can be found in Table 8.2 above. 

A linesearch is the simplest algorithm that is quaranteed to converge that could be 

used for the non-linear outer iteration in a truncated-Newton code; also, a linesearch will 

be a part of all the other algorithms to be described in this sub-section. Thus, such an 

algorithm would be central to any program using a linesearch stategy. The operation 

count is difficult to estimate, since it will depend on how many guesses are needed to 

"sufficiently decrease" the value of the objective function. If k guesses are used, then 

(2k + l)n operations and k function-gradient evaluations will be required. For many 

problems, Ä; will be equal to 1 as the minimum is approached. Our numerical tests have 

indicated that truncated-Newton methods compute well-scaled search directions, and 

that k is often equal to 1 when the Hessian matrix is positive-definite. An efficient linear 

search can be difficult to program, but sample programs are often found in program 

libraries and even on pocket calculators. 

The simplest way to generate a preconditioning for the linear algorithm is to use 

a non-linear conjugate-gradient algorithm. Beale's method is a variant of a non-linear 

conjugate-gradient algorithm in which the new search direction is computed using both 

the most recent direction as well as the first direction. 

Limited-memory quasi-Newton algorithms are almost as flexible as truncated- 

Newton methods, because it is possible to choose both the type of quasi-Newton update 

to use as well as the total number of updates. There is some evidence to indicate (see 

Fenelon [1981]) that choosing k bigger than 2 is not economical. It should be noted that 

a diagonal preconditioning can be added to this algorithm (section 5.3). 

It is also possible to consider using a quasi-Newton method to precondition the linear 

algorithm. Unlike all the other methods considered in this section, quasi-Newton methods 

have storage and operation counts which are quadratic, not linear, in n. For this reason, 

it is difficult to imagine them being competitive with the other methods proposed here. 
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8.2.3.     Linear preconditionings 

Most of the preconditionings generated during the linear subiteration were discussed 

in detail in Chapter 5. However, a few of them were only alluded to in passing. In this 

sub-section we will consider the following options: 

1. BFGS diagonal preconditioning (section 5.3) 

2. rank-one diagonal preconditioning (section 5.3) 

3. exact BFGS diagonal preconditioning (sections 5.3 and 5.4) 

4. exact diagonal of the Hessian 

5. tridiagonal preconditioning based on VTVT (section 5.5) 

6. tridiagonal preconditioning based on R~TTR~1 (section 5.5) 

7. product of the tridiagonal preconditionings (section 5.6) 

8. exact BFGS tridiagonal preconditioning 

9. exact BFGS tridiagonal factors preconditioning 

As in the previous section, these options can only be used with a preconditioned linear 

algorithm. Their operation counts and storage requirements are summarized in Table 

8.3 below. 

Because a new preconditioning is being developed while the old one is still in use, 

two copies of the operator must be kept when using all but the fourth preconditioning 

algorithm. Since the rank-one formula does not guarantee positive-definiteness for the 

preconditioning, some strategy must be designed to modify the diagonal when negative 

elements arise. The exact BFGS formula requires a separate initialization step if a non- 

linear preconditioning is also being used (see section 5.3). 

The two tridiagonal preconditionings (options 5 and 6 above) are very similar. They 

have the same storage requirements, and the programs which implement them have only 

minor differences. When using option 6, however, it is easy to re-orthogonalize the new 

Lanczos vector using the projection matrix R. Loss of orthogonality can seriously degrade 

the performance of conjugate-gradient and Lanczos algorithms; re-orthogonalization can 

significantly improve stability and convergence. 

• It is only possible to precondition using the diagonal elements of the Hessian if these 

elements can be computed at little cost. If this is feasible, then this is a simple and 

inexpensive preconditioning to use. If the Hessian is not positive definite everywhere, 

some strategy must be devised to handle negative diagonal elements. They might be set 
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to some small positive value, or their absolute value might be used; it is also possible 

to use the negative diagonals to compute directions of negative curvature. This latter 

option could be used in place of the inner algorithm at the current iteration. A direction 

of negative curvature could be computed immediately from the exact Hessian information 

and used in the line search with little cost. 

ALGORITHM STORAGE OPERATIONS COMMENTS 

BFGS diagonal D, Du 8l 9n to update, 

n to apply 

rank-one diagonal D, Du 8l 6n to update, 

n to apply 

may be indefinite 

exact BFGS diagonal D,Di 8n to update, 

n to apply 

requires initialization 

diagonal of Hessian D n to apply may be costly to obtain, 

may be indefinite 

tridiagonal VTVT 

[k projectors) 
«1 — «2fc+l (4fc + l)n to apply, 

(fc2 + k)n to form 

requires long program 

tridiagonal R~TTR-1 

(k projectors) 
»1 — »2fc+l (4A: + l)n to apply, 

(k2 + k)n to form 

requires long program 

tridiagonal product 

{k projectors) 
»1 — «2fc+l [4k + l)n to apply, 

(fc2 + k)n to form 

requires long program 

BFGS exact tridiagonal D, Du E, Ei 6n to apply, 

14n to update 

may be indefinite 

Table 8.3      Possible preconditioning strategies 

The next three preconditionings are considerably more complex and expensive to 

apply than any of the other preconditioning strategies examined here. This is because 

they involve the projected Hessians, and information about the projection matrices must 

be computed and stored. There is also some choice about how much information will be 

used; we assume here that k Lanczos vectors are needed, and that k is small in comparison 

with n. Since these preconditionings use information from the Lanczos algorithm, they 

cannot be used with the regular linear conjugate-gradient method. 

It is possible to use the correspondence between the quasi-Newton and linear 

conjugate-gradient algorithms to generate not just the diagonal, but also the principle 
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subdiagonal of Hessian matrix. This method is almost as easy to program as the diagonal 

preconditionings above; however, there is a problem with positive-definiteness. Although 

the diagonal and the complete Hessian approximation can be guaranteed to be positive 

definite, the tridiagonal submatrix may be indefinite, and some strategy must be derived 

for modifying it in this case. 

Because of the problem with indefiniteness for the preceding method, it would be 

preferable to update the diagonal and subdiagonal of the Cholesky factor of the ap- 

proximate Hessian. This would guarantee a positive-definite preconditioning. Unfor- 

tunately, this is infeasible. An examination of the formulas for updating matrix fac- 

torizations in Gill, et al. [1974] shows that updating a portion of the factorization other 

than the diagonal requires knowledge of the complete factorization of the old precon- 

ditioning. Even if this information were available, accessing it would be an Oln2) process. 

Since the preconditioning is being updated at every linear sub-iteration, this method is 

uneconomical. Because generally very few linear iterations are performed, even making 

an update of this type once per outer iteration would often be impractical. 

8.2.4.     Termination criteria for the linear algorithm 

In Chapter 4, we considered the following convergence criteria for the linear algo- 

rithm: 

i- IKII/ll3(fc)ll 

2. \Qq+i-Qq\*/\Qi\l 

3.\Qq+1-Qq\l/\\gW\\ 

i.\Qq+1-Qg\l/\Qq+1\i 

All of these formulas require 2n-3n operations to compute. In some cases, for example 

criterion 1 in combination with a MINRES algorithm, they are a natural by-product of 

the algorithm. When the Lanczos algorithm is used for the linear sub-iteration it may be 

necessary to compute and store the residual in order to apply these tests. They are all 

easy to program. The choice of a forcing sequence (see section 4.4) can be made solely 

on the basis of numerical tests. 

96 



8.2.5.     Computing matrix/vector products 

There are three principle methods of obtaining the matrix/vector products Gp 

required during the linear sub-iteration. They are: 

1. finite differencing along p 

2. computing G using (sparse) finite-differencing (section 2.5) 

3. computing G 

Which method is used depends on the function being minimized; it does, however, have 

an important bearing on the remainder of the algorithm. If the Hessian is difficult to 

compute, or is large and dense, then finite differencing along p may be the only option 

available. This discourages the use of a large number of linear-subiterations since an 

additional gradient evaluation is required for each matrix/vector product. For problems 

where the function and its first and second derivatives are inexpensive to compute relative 

to the cost of solving the linear system, we would again perform few linear iterations, as 

the cost of the linear sub-algorithm would dominate the cost of the function and gradient 

evaluations. 

When G is available and the function is moderately expensive to compute, a larger 

number of inner iterations would be encouraged. In this case, the cost of computing the 

function and its derivatives dominates the cost of the linear sub-iteration and is the same 

at every non-linear outer iteration. 

Unfortunately, few absolute statements can be made about choosing this segment of 

the truncated-Newton algorithm; a decision should be made in the context of a specific 

problem or class of problems. 

8.3.     Choosing a complete truncated-Newton algorithm 

In this section, we will describe what we consider to be the two extreme versions 

of a truncated-Newton algorithm. The decisions made about the construction of the 

complete algorithm are based mainly on the size of the machine being used—either very 

small or large. The ideas used to describe each of these situations can be easily applied 

to more specialized cases. 

In the introduction to this chapter, we mentioned a number of issues which might 

affect the choice of a particular algorithm.  Some of these involved the function being 
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minimized. Although a truncated-Newton algorithm can be used for general optimiza- 

tion, we consider that it will be most useful for large-scale minimization problems. 

In this context, we take "large-scale" to mean that it is difficult to use second- 

derivative information. This might be because the dimension of the problem is large, 

in which case storing or factoring the second-derivative matrix is impossible. It might 

also mean that the Hessian matrix is expensive to compute or is unavailable. A further 

possibility is that the Hessian matrix may be expressed as the product of several large 

sparse matrices, and it is uneconomical to obtain its elements explicitly (this is the case 

in large constrained optimization problems (see Chapter 6)). 

8.3.1     The large-machine case 

When working on a large machine, the only important consideration is efficiently 

finding the solution to the problem in ä stable manner. All the necessary algorithms are 

assumed to be professionally coded and available in a program library, and the size of the 

program is not an issue (since it is pre-compiled in an object-code library). The length 

and complexity of the algorithms are not factors in any decision. However, the storage 

requirements for the method (the number of vectors required) are still important. 

Thus, a preconditioned Lanczos algorithm should be selected to approximately solve 

the Newton equations. Alternatively, a preconditioned MINRES algorithm might be 

chosen if it could be shown to be more effective for the class of problems being solved; 

when terminated using ||r,||, MINRES is almost as efficient as a Lanczos method. As 

a non-linear algorithm, we would probably select a two-step diagonally-preconditioned 

limited-memory quasi-Newton method. Such an algorithm has been shown to be efficient 

and cost-effective for large optimization problems (see Gill and Murray [1979], Fenelon 

[1981]), and has performed well in our numerical tests here. 

We would choose one of the diagonal preconditioning schemes to precondition the 

linear algorithm. They all have low storage requirements and arc inexpensive to generate. 

The tridiagonal preconditioning schemes are considerably more expensive to use and less 

successful in practise; they would have to perform much better in numerical tests before 

they could be recommended for general use. Our results indicate that the exact BFGS 

diagonal preconditioning is the most effective of the diagonal schemes. This choice is 

based on numerical tests, storage requirements, and the stronger theoretical justifications 



for this scheme. Since we are unconcerned about the length of the program, it would 

be possible to include preconditioning with the diagonal elements of the Hessian as a 

user-specified option when these elements can be computed easily. 

The other options for the algorithm (the termination criterion and the forcing 

sequence) would be chosen on the basis of numerical tests. It would depend somewhat on 

the other choices made for the algorithm. The method used to compute matrix/vector 

products could be chosen by the user of the code at run-time. 

8.3.2     The small-machine case 

The major difference between the small- and the large-machine cases is that the size 

of the program is now a factor in the choice of the algorithm. It is impossible to store a 

large code in the memory of a small machine. For this reason, simple iterative methods 

are often preferable to direct methods for solving many problems. Also, because the user 

is often not paying for computer time, and time-sharing is not in effect, storage can be 

a more important issue than speed in the choice of an algorithm. 

Another reason to favor simple and short algorithms is that a small computer will 

not usually come complete with a program library. The user must either write his own 

programs, or at least may be obliged to input the program by typing. In order to decrease 

the probability of error, and also to reduce the overall time needed to solve a problem, 

easy-to-program methods are preferred. 

For these reasons, a preconditioned conjugate-gradient algorithm could be chosen to 

approximately solve the Newton equations. In extreme cases, the preconditioning step 

could be omitted; it is, however, a simple addition to the program and it can greatly 

speed convergence. A linesearch could be chosen as the non-linear algorithm. Because 

of possible indefiniteness, the search direction p should be monitored at every linear 

iteration to insure that it is a descent direction. Although a simple non-linear conjugate- 

gradient method is easy to add, effective methods of this type include such features as 

restarting strategies which can increase the complexity of the code. 

As in the large-machine case, a diagonal preconditioning should be used, unless 

storage is at such a premium that no preconditioning can be included. The limitations 

of the small machine do not seriously affect the choice of the termination criterion and 

the forcing sequence. The matrix/vector products would probably be computed by finite 
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differencing along p, for reasons of simplicity. 

The analysis of these two special cases gives some indication of how a truncated- 

Newton algorithm can be adapted to a specific computing environment. Final decisions 

about preconditioning and termination rules must be made on the basis of numerical 

tests. Some recommendations were made on the basis of the results in Chapter 7. When 

solving specific classes problems in special environments, though, some of the detailed 

choices might be made differently. 
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Appendix 

The following tables summarize the results of the tests discussed in section 7.7. Chapters 7 and 8 may 

be useful in interpreting the tables given here. 

Table 1—Comparison of preconditioning strategies using a subset of the test functions. 

Preconditioning Penl GenRs GenR Calls Call Cheb 
Rank-2 D 7       32 33 183 33 315 12 94 12 191 8       83 
Rank-1 D 7     32 34 192 34 338 13 101 13 236 8     84 
BFGSD 7     32 34 188 34 316 12 93 12 194 9     91 
Exact D 5     24 39 224 39 355 11 78 11 63 8     77 
VTVT 

DNC DNC DNC DNC DNC 17   232 
R-TTR-I 8     40 DNC DNC DNC DNC 21    230 
Product T 10     57 DNC DNC DNC DNC DNC 
BFGST 10   174 41 223 41 321 12 93 12 181 14    181 

Table 2—Comparison of forcing sequences {ipk} using a subset of the test functions. <j>k = min {l/Jb, ||ffW||}, 

and the forcing function (4.3.6) is being used. 

Forcing Sequence Penl GenRs GenR Call s Call . Cheb 

ifc = .5 8 42 39 204 39 247 29 213 29 164 9 56 
V-* = .i 8 44 32 175 32 297 8 59 8 164 7 83 
1>k = .05 8 44 35 207 35 427 7 51 7 172 6 79 
*k = 01 8 45 33 197 33 149 5 38 5 140 10 152 
V>* = max{^fe,.5} 7 31 41 223 41 275 31 226 31 169 9 56 
ipk =max{^jfc,.l} 7 32 34 188 34 301 13 99 13 180 9 79 
rj)k =max{^fc,05} 7 32 35 191 35 317 12 93 12 173 9 90 
r/>fc = max{^jt,.01} 7 32 34 188 34 316 12 93 12 194 9 101 
MAXIT=5 7 32 35 181 35 235 DNC DNC 11 69 
MAXIT=10 7 32 35 194 35 316 19 141 19 189 9 79 
MAXIT=15 7 32 34 188 34 316 15 113 15 187 9 92 
MAXIT=20 7 32 34 188 34 316 14 106 14 201 9 91 
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Table 3—Comparison of forcing sequences {V>*} using a subset of the test functions. 0* = min {l/k, ||<r*'||}, 

and the forcing function (4.3.5) is being used. 

Forcing Sequence .  Penl GenRs GenR Calls Call Cheb 

V>* = 1.00* 7 32 37 207 37  391 10  77 10 177 11 130 

ipk = 1.50* 7 32 35 183 35 342 10  77 10 163 8  80 

V»* = 2.00* 7 32 34 190 34 344 11  88 11 181 10  96 

0* = 2.50* 7 32 38 210 38 402 11  84 11 168 8  59 

rl>k = 3.00* 7 32 38 205 38 347 13 102 13 164 10  90 

Tables 4—Comparison of a number of truncated-Newton routines with various diagonal preconditionings. 

The full set of test functions is used with t) = .25. 

Table 4A—Smaller functions. Differencing along search direction. 

Function PC TNI TN2 TN3 MINR 

Penl 1 7  29 7 32 7  32 7  38 

Start 3 2 7  29 7 32 7  32 7  38 

n = 50 3 7  29 7 32 7  32 7  39 

Pen2 1 11  55 10 56 10  57 16  93 

Start 3 2 10  49 10 56 10  56 17 100 

n = 50 3 11  64 10 58 10  59 17 102 

Pen3 1 10  49 10 47 9  39 10  53 

Start 3 2 10  54 10 48 9  45 11  67 

n = 50 3 10  47 10 47 10  45 11  66 

GenR 1 31 370 34 383 33 315 37 245 

Start 2 2 32 417 36 519 34 338 38 435 

n==50 3 31 330 35 342 34 316 36 329 

Call 1 9 176 10 175 12 191 11 182 

Start 1 2 10 273 10 191 13 236 11 235 

n = 50 3 10 199 10 163 12 194 12 200 

Cal2 1 7  70 6 58 9  69 11 103 

Start 1 2 8  87 8 79 10  84 11 141 

n = 50 3 7  69 7 66 10  86 9  80 

Cal3 1 7 112 9 99 10 122 8  97 

Start 1 2 7 107 11 96 11 127 9 124 

n = 50 3 7 112 11 101 11 114 9 123 
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Table 4B—Larger functions. Differencing along search direction. 

Function PC TNI TN2 TN3 MINR 

Penl 

Start 3 

n=100   * 

1 
2 
3 

2     11 
2     11 
2     11 

2     11 
2     11 
2     11 

2     11 
2     11 
2     11 

2     12 
2     12 
2     12 

Pen2 

Start 3 

n=100 

1 
2 
3 

6     33 
6     32 
6     29 

5     24 
5     24 
5     25 

5     27 
5     27 
5     26 

6     36 
6     36 
6     42 

Pen3 

Start 3 

n= 100 

1 
2 
3 

11     68 
11    115 
11     65 

10 61 
11 99 
10     58 

10     59 
10     59 
10     64 

11     69 
11     64 
11     62 

GenR 

Start 2 

n=100 

1 
2 
3 

61    764 
63 1090 
57   684 

63 754 
64 1046 
62   796 

61    683 
68   979 
64    672 

65   610 
65   653 
67 1183 

Call 

Start 1 

n=100 

.1 
2 
3 

11    413 
10   511 
10   409 

10 302 
12   521 
11 332 

14 335 
18   483 
15 375 

12   351 
14   464 
16 1228 

Cal2 

Start 1 

n=100 

1 
2     . 
3 

7 154 
9   219 
8 117 

7    115 
7    142 
6    107 

11    141 
13    140 
11    131 

12    166 
15   318 
10   407 

Cal3 

Start 1 

n=100 

1 
2 
3 

7    154 
7    171 
7    159 

13    194 
11    220 
16   229 

13 199 
14 232 
14   207 

10 237 
11 259 
11    498 

Table 4C—Miscellaneous smaller functions. Differencing along search directions. 

Function PC TNI TN2 TN3 MINR 

Cheb 1 8     74 8 83 8     83 10     79 
Start 2 2 8     72 8 89 8     84 10     94 
n = 20 a 7     53 8 80 9      91 10     81 
QOR l 6     25 6 25 6      24 7     32 
Start 1 2 6     25 6 24 6     25 7     34 
n = 50 3 6     25 6 24 6     24 7     38 
GOR 1 7     56 8 65 8     60 9     77 
Start 1 2 7     59 8 87 8     68 9     80 
n = 50 3 7     60 8 65 8     57 9    111 
ChaR 1 14     96 14 96 15    106 16    117 
Start 4 2 14    156 15 133 15   154 15    122 
n = 25 3 11     77 12 77 12     77 16    151 
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Table 4D—Sparse finite-differencing. 

Function PC TNI TN2 TN3 MINR 

GenRs 1 31 179- 34 193 33 183 37    187 
SUrt 2 2 32 190 36 204 34 192 38    195 
n = 50 3 31 168 35 183 34 188 36    184 
GenRs 1 61 357 63 356 61 348 65   339 
SUrt 2 2 63 367 64 376 68 409 65   326 
n=100 3 57 335 62 348 64 379 67   356 
Call« 1 9 71 10 77 12 94 11     87 
Start 1 2 10 78 10 77 13 101 11     89 
n = 50 3 10 78 10 77 12 93 12     94 
Calls 1 11 85 10 81 14 109 12     98 
Start 1 2 10 78 12 95 18 139 14    109 
n=100 3 10 79 11 89 15 120 16    125 
Cal2s 1 7 50 6 43 9 64 11     71 
SUrt 1 2 8 57 8 57 10 71 11     81 
n = 50 3 7 50 7 50 10 71 9     68 
Cal2s 1 7 50 7 51 11 78 12     88 
SUrt 1 2 9 64 7 50 13 92 15    111 
n=100 3 8 57 6 44 11 78 10     73 
Cal3s 1 7 50 9 64 10 71 8     60 
Start 1 2 7 50 9 64 12 85 9     67 
n = 50 3 7 50 11 78 11 78 9     69 
Cal3s 1 7 50 13 92 13 92 10 ,76 
SUrt 1 2 7 50 11 78 14 99 11     83 
n=100 3 7 50 16 113 14 99 11     81 
QORs 1 6 55 6 55 6 55 7     64 
SUrt 1 2 6 55 6 55 6 55 7     64 
n = 50 3 6 55 6 55 6 55 7     65 
GORs 1 7 64 8 73 8 74 9     84 
SUrt 1 2 7 64 8 73 8 74 9     85 
n==50 3 7 65 8 73 8 73 9     83 
ChaRs 1 14 74 14 74 15 77 16     79 
Start 4 2 14 77 15 79 15 81 15     74 
n = 25 3 11 56 12 58 12 58 16     81 

Table 4E—Totals. To compute the sparse totals, non-sparse results were used whenever a sparse result was 

not available. 

Function PC TNI TN2 TN3 MINR 

Totab 
sparse 

1 
2 
3 

222 1404 
227 1492 
215 1341 

232 1473 
239 1567 
236 1479 

243 1553 
262 1712 
250 1620 

260 1613 
269 1695 
266 1683 

Totals 
regular 

1 
2 
3 

.222 2709 
227 3477 
215 2539 

232 2580 
239 3417 
236 2613 

243 2553 
262 3180 
250 2581 

260 2597 
269 3276 
266 4752 
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Tables 5—Comparison of various truncated-Newton routines against other optimization algorithms.  All 

test functions are used with i; = .25, .1, .001. 

Table 5A—Smaller functions. Differencing along search direction. 

Function »? PLMA QNM MNA TN PBTN BTN 
Penl .25 22 53 27 33 17 18 7 29 10 46 10 46 
Start 3 .1 8 27 8 26 9 25 7 30 10 48 10 48 
n = 50 .001 8 32 8 31 7 29 3 19 6 40 6 40 
Pen2 .25 52 118 134 242 17 17 11 64 10 60 14 89 
Start 3 .1 28 76 99 322 9 31 12 78 10 64 13 86 
n = 50 .001 15 71 73 341 6 26 12 95 9 67 12 118 
Pen3 .25 40 76 67 135 40 44 10 47 11 60 10 62 
Start 3 .1 38 76 63 150 12 44 9 46 9 52 10 61 
n = 50 .001 28 71 56 155 11 48 9 54 10 63 10 72 
GenR .25 108 201 128 287 62 202 31 330 42 584 33 499 
Start 2 .1 119 263 118 323 66 257 33 348 36 469 32 518 
n = 50 .001 119 330 118 412 88 392 34 395 37 468 35 614 
Call .25 194 366 ■ 162 191 7 9 10 199 8 227 16 978 
Start 1 .1 204 401 89 214 6 11 9 158 8 232 17 1151 
n = 50 .001 205 456 88 269 6 17 9 166 7 252 13 787 
Cal2 .25 64 106 28 52 4 4 7 69 7 104 8 133 
Start 1 .1 61 118 28 54 4 4 7 69 7 104 8 133 
n = 50 .001 60 123 28 67 4 6 7 71 7 107 8 135 
Cal3 .25 80 152 90 114 6 6 7 112 7 125 7 206 
Start 1 .1 78 155 59 135 5 7 7 112 7 127 7 206 
n=50 .001 77 161 59 161 5 11 7 113 7 125 8 289 
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Table 5B—Larger functions. Differencing along search direction. 

Function V PLMA QNM MNA TN PBTN BTN 

Penl 25 17 40 NR NR 2 11 2     11 2       11 
Start 3 1 2 9 NR NR 2 11 2     11 2     11 
n=100 001 '       2 10 NR NR 2 12 2     12 2     12 
Pen2 25 14 28 NR NR 6 29 6     26 6     25 
Start 3 1 7 18 NR NR 6 30 .5     23 5     24 
n = 100 001 7 29 NR NR 6 41 5     33 5     36 
Pen3 25 49 85 NR NR 11 65 11     75 13     79 
Start 3 1 48 94 NR NR 11 67 11     75 13     89 
n=100 001 35 83 NR NR 11 77 11     89 11     91 
GenR 25 191 365 NR NR 57 684 73 1055 60 1150 
Start 2 1 192 410 NR NR 60 775 72 1012 62 1153 
n=100 001 188 528 NR NR 58 782 63 1062 60 1197 
Call 25 423 819 NR NR 10 409 9   828 26 3855 
Start 1 1 429 854 NR NR 10 409 8   570 23 3214 
n= 100 001 416 905 NR NR 10 372 8   602 26 3948 
Cal2 25 112 204 NR NR 8 117 7    172 8   256 
Start 1 1 107 206 NR NR 8 117 7    172 8   256 
n= 100 001 113 228 NR NR 8 122 8    199 8   259 
Cal3 25 143 270 NR NR 7 159 7    196 9   508 
Start 1 1 142 281 NR NR 7 168 7    196 9   636 
n=100 001 138 284 NR NR 7 176 7   195 9   617 

Table 5C—Miscellaneous smaller functions. Differencing along search direction. 

Function V PLMA QNM MNA TN PBTN BTN 

Cheb .25 38 75 32     65 29 121 7     53 10 87 10   104 
Start 2 .1 33 71 28     67 24 116 8     68 9 105 9     96 
n = 20 .001 33 90 28     92 30 161 9     90 10 129 11    164 
QOR .25 14 29 23     39 3 3 6     25 5 25 5     29 
Start 1 .1 14 29 13     27 3 3 6     25 5 25 5     29 
n = 50 .001 14 29 13     27 3 3 6     25 5 25 5     29 
GOR .25 14 71 29     59 5 5 7     60 7 77 7     74 
Start 1 .1 14 76 29     59 5 5 7     61 7 77 7     74 
n = 50 .001 42 97 29     72 5 7 7     67 7 85 6     61 
ChaR .25 40 82 48     97 15 28 11     77 11 121 10     88 
Start 4 .1 37 76 46    122 16 48 11     75 11 91 10     94 
n = 25 .001 43 119 47    164 12 47 14    126 1 4 11    104 
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Table 5D—Sparse finite-differencing. 

Function V PLMA QNM MNA TN PBTN BTN 

GenRs .25 108 201 128 287 62 202 31    168 42 239 33 196 
Start 2 .1 119 263 118 323 66 257 33    198 36 218 32 197 
n = 50 .001 119 330 118 412 88 392 34    245 37 258 35 252 
GenRs .25 191 365 NR NR 57    335 73 415 60 346 
Start 2 .1 192 410 NR NR 60   370 72 430 62 398 
n=100 .001 188 528 NR NR 58    422 63 474 60 441 
Calls .25 194 366 162 191 7 9 10     78 8 63 16 120 
Start 1 .1 204 401 89 214 6 11 9     73 8 66 .17 130 
n = 50 .001 205 456 88 269 6 17 9     88 7 72 13 117 
Calls .25 423 819 NR NR 10     79 9 72 26 191 
Start 1 .1 429 854 NR NR 10     85 8 68 23 178 
n=100 .001 416 905 NR NR 10     95 8 79 26 227 
Cal2s .25 64 106 28 52 4 4 7     50 7 50 8 57 
Start 1 .1 61 118 28 54 4 4 7     50 7 50 8 57 
n = 50 .001 60 123 28 67 4 6 7     52 7 51 8 59 
Cal2s .25 112 204 NR NR 8     57 7 50 8 57 
Start 1 .1 107 206 NR NR 8     57 7 50 8 57 
n= 100 .001 113 228 NR NR 8     59 8 58 8 59 
Cal3s .25 80 152 90 114 6 6 7     50 7 50 7 50 
Start 1 .1 78 155 59 135 5 7 7     50 7 52 7 50 
n = 50 .001 77 161 59 161 5 11 7     59 7 58 8 68 
Cal3s .25 143 270 NR NR 7     50 7 50 -■     9 57 
Start 1 .1 142 281 NR NR 7     51 7 52 9 65 
n = 100 .001 138 284 NR NR ' 7     60 7 60 9 77 
QORs .25 14 29 23 39 3 3 6     55 5 46 5 46 
Start 1 .1 14 29 13 27 3 3 6     55 5 46 5 46 
n = 50 .001 14 29 13 27 3 3 6     55 5 46 5 46 
GORs .25 14 71 29 59 5 5 7     65 7 65 7 64 
Start 1 .1 14 76 29 59 5 5 7     66 7 65 7 64 
n = 50 .001 42 97 29 72 5 7 7     73 7 71 6 59 
ChaRs .25 40 82 48 97 15 28 11     56 11 56 10 51 
Start 4 .1 37 76 46 122 16 48 11     58 11 .60 10 52 
n = 25 .001 43 119 47 164 12 47 14     98 1 3 11 70 

Table 5E—Totals. To compute the sparse totals, non-sparse results were used whenever a sparse result was 

not available. 

Function PLMA QNM MNA TN PBTN BTN 

Totals, sparse 
Totals, regular 

4773 10026 
4773 10026 

NA 

NA 

NA 

NA 

654   4478 
654    7989 

684   4719 
684 10889 

749    5368 
749 24644 
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Tables 6—Comparison of various values of»/ (.25, .1, .001, .5, .7, .9) for the best truncated-Newton routine. 

All test functions are Used. 

Table 6A—Differencing along search direction. 

Function n .25 .1 .001 .5 .7 .9 
Penl 50 7 29 7 30 3 19 16  41 16 41 16 41 
Penl 100 2 11 2 11 2 12 16  42 16 42 16 42 
Pen2 50 11 64 12 78 12 95 18  52 18 52 18 51 
Pen2 100 6 29 6 30 6 41 10  26 10 26 10 26 
Pen3 50 10 47 9 46 9 54 13  56 13 56 13 56 
Pen3 100 11 65 11 67 11 77 14  69 14 69 14 69 
GenR 50 31 330 33 348 34 395 35 420 33 336 34 360 
GenR 100 57 684 60 755 58 782 60 844 60 802 59 688 
Call 50 10 199 9 158 9 166 9 190 9 190 9 165 
Call 100 10 409 10 409 10 372 10 402 11 444 11 480 
Cal2 50 7 69 7 69 7 71 7  69 7 69 7 69 
Cal2 100 8 117 8 117 8 122 8 117 8 117 8 117 
Cal3 50 7 112 7 112 7 113 7 112 7 112 7 112 
Cal3 100 7 159 7 168 7 176 7 159 7 159 7 159 
Cheb 20 7 53 8. 68 9 90 7  53 9 70 12 119 
QOR 50 6 25 6 25 6 25 6  25 6 25 6 25 
GOR 50 7 60 7 61 7 67 7  60 7 60 7 60 
ChaR 25 11 77 11 75 14 126 14  82 14 82 14 82 
Totals 215 2539 220 2627 219 2803 264 2819 265 2752 268 2718 

Table 6B—Sparse finite-differencing. 

Function n .25 .1- .001 .5 .7 .9 
GenRs 50 31 168 33 198 34 245 35 197 33 175 34 191 
GenRs 100 57 335 60 370 58 422 60 344 60 348 59 327 
Calls 50 10  78 9 73 9 . 88 9  65 9 65 9  65 
Calls 100 10  79 10 85 10  95 10  73 11 81 11  80 
Cal2s 50 7  50 7 50 7  52 7  50 7 50 7  50 
Cal2s 100 8  57 8 57 8  59 8  57 8 57 8  57 
Cal3s 50 7  50 7 50 7  59 7  50 7 50 7  50 
Cal3s 100 7  50 7 51 7  60 7  50 7 50 7  50 
QORs 50 6  55 6 55 6  55 6  55 6 55 6  55 
GORs 50 7  65 7 66 7  73 7  65 7 65 7  65 
ChaRs 25 11  56 11 58 14  98 14  66 14 66 14  66 
Totals 161 1043 165 1113 167 1316 170 1072 169 1062 169 1056 
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Tables 7—Comparison of truncated-Newton and modified-Newton algorithms, ignoring function/gradient 

evaluations required to compute the matrix/vector products for TN. 

Table 7A—Smaller functions. 

,    Function V MNA TN 
Penl .25 17     18 7     18 
Start 3 .1 9     25 7     19 
n = 50 .001 7     29 3     15 
Pen2 .25 17     17 11     35 
Start 3 .1 9     31 12     42 
n = 50 .001 6     26 12     57 
Pen3 .25 40     44 10     14 
Start 3 .1 12     44 9     16 
n = 50 .001 11     48 9     24 
GenR .25 62   202 31     75 
Start 2 .1 66   257 33     99 
n = 50 .001 88   392 34    143 
Call .25 7       9 10     18 
Start 1 .1 6     11 9     19 
n = 50 .001 6     17 9     34 
Cal2 .25 4       4 7       8 
Start 1 .1 4       4 7       8 
n = 50 .001 4       6 7     10 
Cal3 .25 6       6 7       8 
Start 1 .1 5       7 7       8 
n = 50 .001 5     11 7     17 

Table 7B—Miscellaneous smaller functions and totals. 

Function V MNA TN 
Cbeb .25 29    121 7     16 
Start 2 .1 24    116 8     17 
n = 20 .001 30    161 9     29 
QOR .25 3       3 6       7 
Start 1 .1 3       3 6       7 
n = 50 .001 3       3 6       7 
GOR .25 5       5 7       9 
SUrt 1 .1 5       5 7     10 
n==50 .001 5       7 7     17 
ChaR .25 15     28 11     23 
Start 4 .1 16     48 11     25 
n = 25 .001 12     47 14     56 
Totals 541 1753 347    910 

109 





Bibliography 

Brent, R.P. (1973), "Some efficient algorithms for solving systems of non-linear equa- 

tions," SLAM Num. Anal., 10, pp. 327-344. 

Broyden, CG. (1971), "The convergence of an algorithm for solving sparse non-linear 

systems," Math. Comp., 25, pp. 285-294. 

Bunch, J.R., and Parlett, B.N. (1971), "Direct methods for solving symmetric indefinite 

systems of linear equations," SIAM Num. Anal, 8, pp. 639-655. 

Bunch, J.R., and Rose, D.J. (1976), Sparse Matrix Computations, Academic Press, New 

York. 

Concus, P., Golub, G., and O'Leary, D.P. (1976), "A generalized conjugate-gradient 

method for the numerical solution of elliptic partial differential equations," in 

Sparse Matrix Computations (J. Bunch and D. Rose, ed.), pp. 309-332, Academic 

Press, New York. 

Davidon, W. (1959), ''Variable metric methods for minimization," A.E.C. Res. and 

Develop. Report ANL-5990, Argonne National Laboratory. 

Dax, A., and Kaniel, S. (1977), "Pivoting techniques for symmetric Gaussian elimination," 

Num. Math., 28, pp. 221-241. 

Dembo, R.S., Eisenstat, S.C., and Steihaug,T. (1980), "Inexact Newton methods," Tech. 

Report Series B: 47, School of Organization and Management, Yale University. 

Dembo, R.S., and Steihaug, T. (1980), "Truncated-Newton methods for large-scale 

optimization," presented at the ORSA/TIMS Joint National Meeting in 

Washington, DC, May 1980. 

Dennis, J.E., and More, J.J. (1977), "Quasi-Newton methods, motivation and theory," 

SLAM Review, 19, pp. 46-89. 

Fenelon, M. (1981), "Preconditioned conjugate-gradient-type methods for large-scale un- 

constrained optimization," Ph.D. thesis, Dcpt. of Operations Research, Stanford 

University. 

110 



Fletcher, R. (1965), "Function minimization without evaluating derivatives— a review," 

Comput. J., 8, pp. 33-41. 

Fletcher, R., and Reeves, CM. (1964), "Function minimization by conjugate gradients," 

Comput. J., 7, pp. 149-154. 

Forsythe, G.E., and Straus, E.G. (1955), "On best conditioned matrices," Proc. Amer. 

Math. Soc, 6, pp. 340-345. 

Gill, P.E., Golub, G., Murray, W., and Saunders, M.A. (1974), "Methods for modifying 

matrix factorizations," Math. Comp., 28, pp. 505-536. 

Gill, P.E., and Murray, W. (1972), "Quasi-Newton methods for unconstrained optimiza- 

tion," J. Inst. Maths. Applies., 9, pp. 91-108. 

Gill, P.E., and Murray, W. (1973a), "The numerical solution of a problem in the calculus 

of variations," in Recent Mathematical Developments in Control {D.i. Bell, ed.), 

pp. 97-122, Academic Press, London and New York. 

Gill, P.E., and Murray, W. (1973b), "Quasi-Newton methods for linearly constrained 

optimization," Report NAC 32, National Physical Laboratory, England. 

Gill, P.E., and Murray, W. (1974a), "Newton-type methods for unconstrained and 

linearly constrained optimization," Math. Prog, 17, pp. 311-350. 

Gill, P.E., and Murray, W. (1974b), "Safeguarded steplength algorithms for optimiza- 

tion using descent methods," Report NAC 37, National Physical Laboratory, 

England. 

Gill, P.E., and Murray, W. (1976), "Nonlinear least squares and nonlinearly constrained 

optimization," in Numerical Analysis, Lecture Notes in Mathematics no. 506 

(G.A. Watson, ed.), pp. 134-147, Springer-Verlag, Berlin. 

Gill, P.E., and Murray, W. (1978), "Algorithms for the solution of the nonlinear least- 

squares problem," SIAM Num. Anal., 15, pp. 977-992. 

Gill, P.E., and Murray, W. (1979), "Conjugate-gradient methods for large-scale nonlinear 

optimization," Report SOL 79-15, Operations Research Dept., Stanford Univer- 

sity. 

Ill 



Gill, P.E., Murray, W., and Pitficld, R.A. (1972), "The implementation of two revised 

quasi-Newton algorithms for unconstrained optimization," Report NAC 11, Na- 

tional Physical Laboratory, England. 

Greenstadt, J.L. (1967), "On the relative inefficiencies of gradient methods," Math. 

Comp, 21, pp. 360-367. 

Hebden, M.D. (1973), "An algorithm for minimization using exact second derivatives," 

Tech. Report T.P. 515, A.E.R.E., Theoretical Physics Division, Harwell, 

England. 

Hestenes, M. (1980), Conjugate direction methods in optimization, Springer-Verlag, Ber- 

lin. 

Hestenes, M., and Stiefel, E. (1952), "Methods of conjugate gradients for solving linear 

systems," J. Res. Nat. Bur. Standards, 49, pp. 409-436. 

Lanczos, C. (1950), "An iteration method for the solution of the eigenvalue problem of 

linear differential and integral operators," J. Res. Nat. Bur. Standards, 45, pp. 

255-282. 

Luenberger, D.G. (1973), Introduction to linear and nonlinear programming, Addison- 

Wesley, Reading, MA. 

Marwil, E.S. (1978), "Exploiting sparsity in Newton-like methods," Ph.D. thesis, Dept. 

of Computer Science, Cornell University. 

McCormick, G.P., and Pearson, J.D. (1969), "Variable metric methods and unconstrained 

optimization," in Optimization (R. Fletcher, ed.), pp. 307-325, Academic Press, 

London and New York. 

Murray, W. (1972), "Second derivative methods," in "Numerical methods for uncon- 

strained optimization" (W. Murray, ed.), Academic Press, London and New 

Yorki pp. 57-71. 

Murtagh, B.A. and Saunders, M.A. (1978), "Large-scale linearly constrained optimiza- 

tion," Math. Prog., 14, pp. 41-72. 

112 



Murtagh, B.A. and Saunders, M.A. (1980, revised Fcbrurary 1981), "A projected Lagran- 

gian algorithm and its implementation for sparse nonlinear constraints," Report 

80-1R, Operations Research Dept., Stanford University. 

Ortega, J.M., and Rheinbolt, W.C. (1970), Iterative solution of nonlinear equations in 

several variables, Academic Press, London and New York. 

Paige, C.C., and Saunders, M.A. (1975), "Solution of sparse indefinite systems of linear 

equations," SLAM Num. Anal., 12, pp. 617-629. 

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood 

Cliffs, NJ. 

Parlett, B.N., and Scott, D.S. (1979), "The Lanczos algorithm with selective or- 

thogonalization," Math. Comp., 33, pp. 217-238. 

Powell, M. J.D. (1970), "A FORTRAN subroutine for unconstrained minimization, requir- 

ing first derivatives of the objective function," Report AERE-R 6469, Atomic 

Energy Research Establishment, Harwell, England. 

Powell, M.J.D. (1976), "Some convergence properties of the conjugate gradient method," 

Math. Prog., 11, pp. 42-49. 

Powell, M.J.D. (1977), "Restart procedures for the conjugate gradient method," Math. 

Prog., 12, pp. 241-254. 

Powell, M.J.D., and Toint, P. (1979), "The estimation of sparse Hessian matrices," SLAM 

Num. Anal, 16, pp. 1060-1074. 

Rosenbrock, H.H. (1960), "An automatic method for finding the greatest or least value 

of a function," Comput. J., 3, pp. 175-184. 

Schubert, L.K. (1970), "Modification of a quasi-Newton method for nonlinear equations 

with a sparse Jacobian," Math. Comp., 24, pp. 27-30. 

Sherman, A.H. (1978), "On Newton-iterative methods for the solution of systems of 

nonlinear equations," SLAM Num. Anal., 15, pp. 755-771. 

Steihaug, T. (1980), "Quasi-Newton methods for large-scale nonlinear problems," Ph.D. 

thesis, School of Organization and Management, Yale University. 

113 



Stewart, G.W. (1967), "A modification of Davidon's method to accept difference ap- 

proximations of derivatives," J. ACM, 14, pp. 72-83. 

Thapa,   M.  (1980),   "Optimization  of unconstrained  functions with sparse Hessian 

matrices," Ph.D. thesis, Dept. of Operations Research, Stanford University. 

Toint, P. (1978), "Some numerical results using a sparse matrix updating formula in 

unconstrained optimization," Math. Comp., 32, pp. 839-851. 

van der Sluis, A. (1969), "Condition numbers and equilibration of matrices," Num. Math., 

14, pp. 14-23. 

Vardi, A. (1980), "A trust region algorithm for unconstrained minimization: convergence 

propei ties and implementation," ICASE Report 80-35. 

Wilkinson, J.H. (1965), The algebraic eigenvalue problem, Oxford Univerity Press, Lon- 

don. 

114 


